Sixteen neutral mixed ligand thiosemicarbazone complexes of ruthenium having general formula [Ru(PPh3)(2)L-2], where LH = 1-(arylidine)4-aryl thiosemicarbazones, have been synthesized and characterized. All complexes are diamagnetic and hence ruthenium is in the +2 oxidation state (low-spin d(6), S = 0). The complexes show several intense peaks in the visible region due to allowed metal to ligand charge transfer transitions. The structures of four of the complexes have been determined by single-crystal X-ray diffraction and they show that thiosemicarbazone ligands coordinate to the ruthenium center through the hydrazinic nitrogen and sulfur forming four-membered chelate rings with ruthenium in N2S2P2 coordination environment. In dichloromethane solution, the complexes show two quasi-reversible oxidative responses corresponding to loss of electron from HOMO and HOMO - 1. The E-0 values of the above two oxidations shows good linear relationship with Hammett substituents constant (sigma) as well as with the HOMO energy of the molecules calculated by the EHMO method. A DFT calculation on one representative complex suggests that there is appreciable contribution of the sulfur p-orbitals to the HOMO and HOMO - 1. Thus, assignment of the oxidation state of the metal in such complexes must be made with caution. (c) 2005 Elsevier B.V. All rights reserved.
2-Acetylpyridine thiosemicarbazones. 1. A new class of potential antimalarial agents
作者:Daniel L. Klayman、Joseph F. Bartosevich、T. Scott Griffin、Carl J. Mason、John P. Scovill
DOI:10.1021/jm00193a020
日期:1979.7
Based on the antimalarial properties observed for 2-acetylpyridine 4-phenyl-3-thiosemicarbazone (1), an extensive series of related thiosemicarbazones was prepared and tested against Plasmodium berghei in mice. Screening results indicated that the presence of the 2-pyridylethylidene group was critical and that certain phenyl, benzyl, phenethyl, or cycloalkyl groups at N4 of the thiosemicarbazone moiety