摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5,5'-bis[4-(7-bromobenzo[2,1,3]thiadiazole)]-3,3'-bis(2-ethylhexyl)silylene-2,2'-bithiophene | 1401032-28-7

中文名称
——
中文别名
——
英文名称
5,5'-bis[4-(7-bromobenzo[2,1,3]thiadiazole)]-3,3'-bis(2-ethylhexyl)silylene-2,2'-bithiophene
英文别名
5,5’-bis{4-(7-bromo-[1,2,5]thiadiazolobenzene)}-3,3’-di-2-ethylhexylsilylene-2,2’-bithiophene;4-Bromo-7-[10-(4-bromo-2,1,3-benzothiadiazol-7-yl)-7,7-bis(2-ethylhexyl)-3,11-dithia-7-silatricyclo[6.3.0.02,6]undeca-1(8),2(6),4,9-tetraen-4-yl]-2,1,3-benzothiadiazole;4-bromo-7-[10-(4-bromo-2,1,3-benzothiadiazol-7-yl)-7,7-bis(2-ethylhexyl)-3,11-dithia-7-silatricyclo[6.3.0.02,6]undeca-1(8),2(6),4,9-tetraen-4-yl]-2,1,3-benzothiadiazole
5,5'-bis[4-(7-bromobenzo[2,1,3]thiadiazole)]-3,3'-bis(2-ethylhexyl)silylene-2,2'-bithiophene化学式
CAS
1401032-28-7
化学式
C36H40Br2N4S4Si
mdl
——
分子量
844.898
InChiKey
RFHWZLGFDBCVIH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    12.65
  • 重原子数:
    47
  • 可旋转键数:
    14
  • 环数:
    7.0
  • sp3杂化的碳原子比例:
    0.44
  • 拓扑面积:
    165
  • 氢给体数:
    0
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-(4,4-bis(2-ethylhexyl)-6-(trimethylstannyl)-4H-silolo[3,2-b:4,5-b']dithiophen-2-yl)-7-(5'-hexyl-[2,2'-bithiophen]-5-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine 、 5,5'-bis[4-(7-bromobenzo[2,1,3]thiadiazole)]-3,3'-bis(2-ethylhexyl)silylene-2,2'-bithiophene四(三苯基膦)钯 作用下, 以 甲苯 为溶剂, 反应 0.82h, 以72%的产率得到C122H148N10S14Si3
    参考文献:
    名称:
    Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths
    摘要:
    The influence of extending the molecular length of donor acceptor chromophores on properties relevant to organic optoelectronic devices has been studied by using two new narrow-band-gap systems. Most significantly, we find that the higher molecular weight systems exhibit higher thermal stabilities (beyond 200 degrees C) when introduced into field effect transistor devices. It is also possible to fabricate bulk heterojunction solar cells using PC61BM with power conversion efficiencies >6%. These high values are not heavily influenced by the blend composition and are achieved without the influence of solvent additives or postdeposition thermal annealing.
    DOI:
    10.1021/ja310483w
  • 作为产物:
    描述:
    4,7-二溴-2,1,3-苯并噻二唑44’-双(2-乙基己酯)-55’-双(三甲基锡)-噻吩[32-b:23-d]硅杂环戊二烯四(三苯基膦)钯 作用下, 以 甲苯 为溶剂, 反应 1.33h, 以45%的产率得到5,5'-bis[4-(7-bromobenzo[2,1,3]thiadiazole)]-3,3'-bis(2-ethylhexyl)silylene-2,2'-bithiophene
    参考文献:
    名称:
    Solar Cell Efficiency, Self-Assembly, and Dipole–Dipole Interactions of Isomorphic Narrow-Band-Gap Molecules
    摘要:
    We examine the correlations of the dipole moment and conformational stability to the self-assembly and solar cell performance within a series of isomorphic, solution-processable molecules. These charge-transfer chromophores are described by a D-1-A-D-A-D-1 structure comprising electron-rich 2-hexylbithiophene and 3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene moieties as the donor units D-1 and D, respectively. The building blocks 2,1,3-benzothiadiazole (BT) and [1,2,5]thiadiazolo[3,4-c]pyridine (PT) were used as the electron-deficient acceptor units A. Using a combination of UV-visible spectroscopy, field-effect transistors, solar cell devices, grazing incident wide-angle X-ray scattering, and transmission electron microscopy, three PT-containing compounds (1-3) with varying regiochemistry and symmetry, together with the BT-based compound 5,5'-bis{(4-(7-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolobenzene}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (4), are compared and contrasted in solution, in thin films, and as blends with the electron acceptor [6,6]-phenyl-C-70-butyric acid methyl ester. The molecules with symmetric orientations of the PT acceptor, 1 and 2, yield highly ordered blended thin films. The best films, processed with the solvent additive 1,8-diiodooctane, show donor "crystallite" length scales on the order or 15-35 nm and photovoltaic power conversion efficiencies (PCEs) of 7.0 and 5.6%, respectively. Compound 3, with an unsymmetrical orientation of PT heterocycles, shows subtle differences in the crystallization behavior and a best PCE of 3.2%. In contrast, blends of the BT-containing donor 4 are highly disordered and give PCEs below 0.2%. We speculate that the differences in self-assembly arise from the strong influence of the BT acceptor and its orientation on the net dipole moment and geometric description of the chromophore.
    DOI:
    10.1021/ja3050713
点击查看最新优质反应信息

文献信息

  • Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths
    作者:Xiaofeng Liu、Yanming Sun、Louis A. Perez、Wen Wen、Michael F. Toney、Alan J. Heeger、Guillermo C. Bazan
    DOI:10.1021/ja310483w
    日期:2012.12.26
    The influence of extending the molecular length of donor acceptor chromophores on properties relevant to organic optoelectronic devices has been studied by using two new narrow-band-gap systems. Most significantly, we find that the higher molecular weight systems exhibit higher thermal stabilities (beyond 200 degrees C) when introduced into field effect transistor devices. It is also possible to fabricate bulk heterojunction solar cells using PC61BM with power conversion efficiencies >6%. These high values are not heavily influenced by the blend composition and are achieved without the influence of solvent additives or postdeposition thermal annealing.
  • Design and Properties of Intermediate-Sized Narrow Band-Gap Conjugated Molecules Relevant to Solution-Processed Organic Solar Cells
    作者:Xiaofeng Liu、Yanming Sun、Ben B. Y. Hsu、Andreas Lorbach、Li Qi、Alan J. Heeger、Guillermo C. Bazan
    DOI:10.1021/ja413144u
    日期:2014.4.16
    Increases in the molecular length of narrow band gap conjugated chromophores reveal potentially beneficial optical and electronic properties, thermal stabilities, and high power conversion efficiencies when integrated into optoelectronic devices, such as bulk heterojunction organic solar cells. With the objective of providing useful information for understanding the transition from small-sized molecules to polymers, as well as providing a general chemical design platform for extracting relationships between molecular structure and bulk properties, we set out to vary the electron affinity of the molecular backbone. Therefore, a series of donor (D) acceptor (A) alternating narrow band gap conjugated chromophores were synthesized based on the general molecular frameworks: D-1-A(1)-D-2-A(2)-D-2-A(1)-D-1 and D-1-A(1)-D-2-A(2)-D-2-A(2)-D-2-A(1)-D-1. When the central electron-accepting moiety (A(2)) was varied or modified, two classes of molecules could be compared. First, we showed that the alteration of one single electron-accepting group, while maintaining the shape of the molecular framework, can effectively impact the optical properties and energy levels of the molecules. DFT ground state structure optimizations show similar "U" shape conformations among these molecules. Second, we examined how the site-specific introduction of fluorine atom(s) modifies the thermal properties in the solid state, while maintaining relatively similar optical and electrochemical features of interest. Structure property relationship of such molecular systems could be rationally evaluated in the aspects of thermal-responsive molecular organizations in the solid state and dipole moments both in the ground and excited states. The impact of molecular structure on charge carrier mobilities in field effect transistors and the performance of photovoltaic devices were also studied.
  • Solar Cell Efficiency, Self-Assembly, and Dipole–Dipole Interactions of Isomorphic Narrow-Band-Gap Molecules
    作者:Christopher J. Takacs、Yanming Sun、Gregory C. Welch、Louis A. Perez、Xiaofeng Liu、Wen Wen、Guillermo C. Bazan、Alan J. Heeger
    DOI:10.1021/ja3050713
    日期:2012.10.10
    We examine the correlations of the dipole moment and conformational stability to the self-assembly and solar cell performance within a series of isomorphic, solution-processable molecules. These charge-transfer chromophores are described by a D-1-A-D-A-D-1 structure comprising electron-rich 2-hexylbithiophene and 3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene moieties as the donor units D-1 and D, respectively. The building blocks 2,1,3-benzothiadiazole (BT) and [1,2,5]thiadiazolo[3,4-c]pyridine (PT) were used as the electron-deficient acceptor units A. Using a combination of UV-visible spectroscopy, field-effect transistors, solar cell devices, grazing incident wide-angle X-ray scattering, and transmission electron microscopy, three PT-containing compounds (1-3) with varying regiochemistry and symmetry, together with the BT-based compound 5,5'-bis(4-(7-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolobenzene}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (4), are compared and contrasted in solution, in thin films, and as blends with the electron acceptor [6,6]-phenyl-C-70-butyric acid methyl ester. The molecules with symmetric orientations of the PT acceptor, 1 and 2, yield highly ordered blended thin films. The best films, processed with the solvent additive 1,8-diiodooctane, show donor "crystallite" length scales on the order or 15-35 nm and photovoltaic power conversion efficiencies (PCEs) of 7.0 and 5.6%, respectively. Compound 3, with an unsymmetrical orientation of PT heterocycles, shows subtle differences in the crystallization behavior and a best PCE of 3.2%. In contrast, blends of the BT-containing donor 4 are highly disordered and give PCEs below 0.2%. We speculate that the differences in self-assembly arise from the strong influence of the BT acceptor and its orientation on the net dipole moment and geometric description of the chromophore.
查看更多

同类化合物

(5-氯-2,1,3-苯并噻二唑-4-基)-氨基甲氨基硫代甲酸甲酯一氢碘 阿拉酸式苯-S-甲基 阿拉酸式苯 试剂4,7-Bis(5-bromo-2-thienyl)-5,6-bis(dodecyloxy)-2,1,3-benzothiadiazole 苯并恶唑-6-胺 苯并[d][1,2,3]噻二唑-6-羧酸 苯并[C][1,2,5]噻二唑-5-硼酸频那醇酯 苯并[C][1,2,5]噻二唑-4-磺酸钠 苯并[C][1,2,5]噻二唑-4-基甲醇 苯并[C][1,2,5]噻二唑-4,7-二基二硼酸 苯并[1,2,5]噻二唑-4-羧酸 苯并[1,2,5]噻二唑-4-磺酰氯 苯并[1,2,3]噻二唑-7-基胺 苯并[1,2,3]噻二唑-6-羧酸甲酯 苯并[1,2,3]噻二唑-5-基胺 苯并[1,2,3]噻二唑-4-基胺 苯2,1,3-噻重氮-5-羧酸酯 碘化(2,1,3-苯并硫杂(SIV)二唑-5-基)二甲基八氧代甲基铵 硫代磷酸S-[(2,1,3-苯并噻二唑-5-基)甲基]酯O,O-二钠盐 盐酸替扎尼定-d4 盐酸替扎尼定 灭草荒 替托尼定D4 替扎尼定杂质1 替扎尼定 噻唑并[4,5-f]-2,1,3-苯并噻二唑,6-甲基-(6CI,8CI) 去氢替扎尼定 全氟苯并[c][1,2,5]噻二唑 [7-[2-[2-(8-硫杂-7,9-二氮杂双环[4.3.0]壬-3,5,9-三烯-7-基)乙基二巯基]乙基]-8-硫杂-7,9-二氮杂双环[4.3.0]壬-3,5,9-三烯-2-基]甲胺 N-甲氧基-N-甲基-2,1,3-苯并噻二唑-5-酰胺 N-(5-氯-2,1,3-苯并噻二唑-4-基)硫脲 N,N'-二硫代二(亚乙基)二(2,1,3-苯并噻二唑-5-甲胺) N'-2,1,3-苯并噻二唑-4-基-N,N-二甲基酰亚胺基甲酰胺 BTQBT(升华提纯) 7H-咪唑并[4,5-g][1,2,3]苯并噻二唑 7H-咪唑并[4,5-e][1,2,3]苯并噻二唑 7-肼基[1,3]噻唑并[4,5-e][2,1,3]苯并噻二唑 7-硝基-苯并[1,2,5]噻二唑-4-基胺 7-硝基-1,2,3-苯并噻二唑 7-甲基[1,3]噻唑并[5,4-e][2,1,3]苯并噻二唑 7-甲基[1,3]噻唑并[4,5-e][2,1,3]苯并噻二唑 7-甲基[1,3]噻唑并[4,5-e][1,2,3]苯并噻二唑 7-溴苯并[c][1,2,5]噻二唑-4-磺酸 7-溴-苯并[D][1,2,3]噻二唑 7-溴-5-甲基-4-硝基-2,1,3-苯并噻二唑 7-溴-4-醛基苯并[C][1,2,5]噻二唑 7-溴-2,1,3-苯并噻二唑-4-磺酰氯 7-溴-2,1,3-苯并噻二唑-4-甲腈 7-溴-2,1,3-苯并噻二唑-4-亚磺酸 7-氯-苯并[1,2,5]噻二唑-4-基胺