FLUORINATED SULFONATE ESTERS OF ARYL KETONES FOR NON-IONIC PHOTO-ACID GENERATORS
申请人:International Business Machines Corporation
公开号:US20180046077A1
公开(公告)日:2018-02-15
Non-ionic photo-acid generating (PAG) compounds were prepared that contain an aryl ketone group having a perfluorinated substituent alpha to the ketone carbonyl. The non-polymeric PAGs release a sulfonic acid when exposed to high energy radiation such as deep UV or extreme UV light. The photo-generated sulfonic acid has a low diffusion rate in an exposed resist layer subjected to a post-exposure bake (PEB) at 100° C. to 150° C., resulting in formation of good line patterns after development. At higher temperatures, the PAGs can also undergo a thermal reaction to form a sulfonic acid. The perfluorinated substituent provides improved thermal stability and hydrolytic/nucleophilic stability.
[EN] TRIAZACYCLODODECANSULFONAMIDE ("TCD")-BASED PROTEIN SECRETION INHIBITORS<br/>[FR] INHIBITEURS DE SÉCRÉTION DE PROTÉINE À BASE DE TRIAZACYCLODODÉCANSULFONAMIDE ("TCD")
申请人:KEZAR LIFE SCIENCES
公开号:WO2019178510A1
公开(公告)日:2019-09-19
Provided herein are triazacyclododecansulfonamide ("TCD")-based protein secretion inhibitors, such as inhibitors of Sec61, methods for their preparation, related pharmaceutical compositions, and methods for using the same. For example, provided herein are compounds of Formula (I) and pharmaceutically acceptable salts and compositions including the same. The compounds disclosed herein may be used, for example, in the treatment of diseases including inflammation and/or cancer.
GLYCOPEPTIDE AND LIPOGLYCOPEPTIDE ANTIBIOTICS WITH IMPROVED SOLUBILITY
申请人:Rafai Far Adel
公开号:US20120149632A1
公开(公告)日:2012-06-14
The invention relates to derivatives of glycopeptide and lipoglycopeptide antibiotics possessing an altered ionization state with respect to the parent glycopeptide or lipoglycopeptide antibiotic, and having the ability to be regenerated as the parent glycopeptide or lipoglycopeptide antibiotic under physiological conditions. These compounds are useful as antibiotics for the prevention and/or the treatment of bacterial infections.
An isocyanate production method according to the present invention is a method in which an isocyanate is produced by subjecting a carbamate to thermal decomposition, and includes: a step of preparing a mixture liquid containing the carbamate, an inactive solvent and a polyisocyanate compound; a step of conducting a thermal decomposition reaction of the carbamate by continuously introducing the mixture liquid into a thermal decomposition reactor; a step of collecting a low-boiling decomposition product by continuously extracting the low-boiling decomposition product in a gaseous state from the reactor, the low-boiling decomposition product having a boiling point lower than the polyisocyanate compound; and a step of collecting a high-boiling component by continuously extracting, from the reactor, a liquid phase component which is not collected in a gaseous state at the step of collecting the low-boiling decomposition product.
Method for producing carbamates and method for producing isocyanates
申请人:——
公开号:US20030125579A1
公开(公告)日:2003-07-03
A method for producing carbamates that enables carbamates to be produced at low costs, with high selectivity and high yield, and in a simple manner, and a method for producing isocyanates that enables isocyanates industrially used to be produced by using the carbamates obtained by the carbamates producing method. Nonaromatic amine selected from the group consisting of aliphatic amine, alicyclic amine, and aralkyl amine is allowed to react with alkylaryl carbonate to thereby produce carbamates. Also, the carbamates thus obtained are thermally decomposed to thereby produce isocyanates. When carbamates are produced in this method, alkyl carbamates can be obtained with high selectivity and at high yield by using simple equipment. Also, when isocyanates are produced in this method, polyisocyanates used industrially as the raw material of polyurethane can be produced in a simple manner and with efficiency.