Loss of antagonistic activity of tamoxifen by replacement of one N-methyl of its side chain by fluorinated residues
摘要:
Efforts to limit the metabolic alteration of the aminoalkyl side chain of tamoxifen by fluorination largely decrease its ER-mediated antagonistic properties in MCF-7 cells (i.e., ability to inhibit growth, to stabilize ER, and to modulate ERE and AP-1 transcriptional activity). This loss is associated with an enhancement of agonistic activity. Loss of interaction between Asp 351 and the nitrogen atom of tamoxifen provoked by the fluorination of its side chain may explain this property. (c) 2006 Elsevier Ltd. All rights reserved.
Loss of antagonistic activity of tamoxifen by replacement of one N-methyl of its side chain by fluorinated residues
摘要:
Efforts to limit the metabolic alteration of the aminoalkyl side chain of tamoxifen by fluorination largely decrease its ER-mediated antagonistic properties in MCF-7 cells (i.e., ability to inhibit growth, to stabilize ER, and to modulate ERE and AP-1 transcriptional activity). This loss is associated with an enhancement of agonistic activity. Loss of interaction between Asp 351 and the nitrogen atom of tamoxifen provoked by the fluorination of its side chain may explain this property. (c) 2006 Elsevier Ltd. All rights reserved.
Efforts to limit the metabolic alteration of the aminoalkyl side chain of tamoxifen by fluorination largely decrease its ER-mediated antagonistic properties in MCF-7 cells (i.e., ability to inhibit growth, to stabilize ER, and to modulate ERE and AP-1 transcriptional activity). This loss is associated with an enhancement of agonistic activity. Loss of interaction between Asp 351 and the nitrogen atom of tamoxifen provoked by the fluorination of its side chain may explain this property. (c) 2006 Elsevier Ltd. All rights reserved.