3D protein modeling and virtual screening of commercially-available compounds were performed to identify new inhibitors of the herpesvirus DNA polymerase, a key enzyme in the viral replication cycle. Two compounds (Nos 2 and 9) were particularly active against HSV-1 and HSV-2 strains and one compound (No 3) inhibited specifically cytomegalovirus (CMV) strains (overall hit rate of 25%). Some of the tested compounds inhibited wild-type viruses and strains resistant to current antiviral agents. New chemical entity derivatives of compound 2 with binding potential to the DNA polymerase retained an excellent activity against HSV-1, HSV-2 and VZV like the parental compound, as well against strains resistant to current antiviral agents. These non-nucleosidic herpesvirus DNA polymerase inhibitors with in vitro activity against drug-resistant clinical isolates warrant further pre-clinical studies.
3D protein modeling and virtual screening of commercially-available compounds were performed to identify new inhibitors of the herpesvirus DNA polymerase, a key enzyme in the viral replication cycle. Two compounds (Nos 2 and 9) were particularly active against HSV-1 and HSV-2 strains and one compound (No 3) inhibited specifically cytomegalovirus (CMV) strains (overall hit rate of 25%). Some of the tested compounds inhibited wild-type viruses and strains resistant to current antiviral agents. New chemical entity derivatives of compound 2 with binding potential to the DNA polymerase retained an excellent activity against HSV-1, HSV-2 and VZV like the parental compound, as well against strains resistant to current antiviral agents. These non-nucleosidic herpesvirus DNA polymerase inhibitors with in vitro activity against drug-resistant clinical isolates warrant further pre-clinical studies.
[EN] COMPOUNDS FOR THE INHIBITION OF HERPESVIRUSES<br/>[FR] COMPOSÉS DESTINÉS À INHIBER DES VIRUS DE L'HERPÈS
申请人:UNIV LAVAL
公开号:WO2010132992A1
公开(公告)日:2010-11-25
3D protein modeling and virtual screening of commercially-available compounds were performed to identify new inhibitors of the herpesvirus DNA polymerase, a key enzyme in the viral replication cycle. Two compounds (Nos 2 and 9) were particularly active against HSV-1 and HSV-2 strains and one compound (No 3) inhibited specifically cytomegalovirus (CMV) strains (overall hit rate of 25%). Some of the tested compounds inhibited wild-type viruses and strains resistant to current antiviral agents. New chemical entity derivatives of compound 2 with binding potential to the DNA polymerase retained an excellent activity against HSV-1, HSV-2 and VZV like the parental compound, as well as against strains resistant to current antiviral agents. These non-nucleosidic herpesvirus DNA polymerase inhibitors with in vitro activity against drug-resistant clinical isolates warrant further pre-clinical studies.