A new series of 2- and/or 3-substituted pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides and their 8-chloro derivatives were synthesized, and their benzodiazepine receptor (BZR) affinities were evaluated in vitro in comparison to lead compound 3-ethoxycarbonyl-8-chloropyrazolo[5,1-c][1,2,4]benzotriazine-5-oxide (29) [1,2]. None of the new compounds showed significant affinity for BZR. On the basis of a pharmacophore/receptor model suggested for lead compound 29, some hypotheses to explain the inactivity of new derivatives are discussed. (C) 1999 Elsevier Science S.A. All rights reserved.
A new series of 2- and/or 3-substituted pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides and their 8-chloro derivatives were synthesized, and their benzodiazepine receptor (BZR) affinities were evaluated in vitro in comparison to lead compound 3-ethoxycarbonyl-8-chloropyrazolo[5,1-c][1,2,4]benzotriazine-5-oxide (29) [1,2]. None of the new compounds showed significant affinity for BZR. On the basis of a pharmacophore/receptor model suggested for lead compound 29, some hypotheses to explain the inactivity of new derivatives are discussed. (C) 1999 Elsevier Science S.A. All rights reserved.
Bi-functional complexes and methods for making and using such complexes
申请人:Gouliaev Alex Haahr
公开号:US11225655B2
公开(公告)日:2022-01-18
The present invention is directed to a method for the synthesis of a bi-functional complex comprising a molecule part and an identifier oligonucleotide part identifying the molecule part. A part of the synthesis method according to the present invention is preferably conducted in one or more organic solvents when a nascent bi-functional complex comprising an optionally protected tag or oligonucleotide identifier is linked to a solid support, and another part of the synthesis method is preferably conducted under conditions suitable for enzymatic addition of an oligonucleotide tag to a nascent bi-functional complex in solution.
BI-FUNCTIONAL COMPLEXES AND METHODS FOR MAKING AND USING SUCH COMPLEXES
申请人:Nuevolution A/S
公开号:EP2558577A1
公开(公告)日:2013-02-20
BI-FUNCTINAL COMPLEXES AND METHODS FOR MAKING AND USING SUCH COMPLEXES
申请人:Gouliaev Alex Haahr
公开号:US20130281324A1
公开(公告)日:2013-10-24
The present invention is directed to a method for the synthesis of a bi-functional complex comprising a molecule part and an identifier oligonucleotide part identifying the molecule part. A part of the synthesis method according to the present invention is preferably conducted in one or more organic solvents when a nascent bi-functional complex comprising an optionally protected tag or oligonucleotide identifier is linked to a solid support, and another part of the synthesis method is preferably conducted under conditions suitable for enzymatic addition of an oligonucleotide tag to a nascent bi-functional complex in solution.
[EN] BI-FUNCTIONAL COMPLEXES AND METHODS FOR MAKING AND USING SUCH COMPLEXES<br/>[FR] COMPLEXES BIFONCTIONNELS ET PROCÉDÉS DE FABRICATION ET D'UTILISATION DE TELS COMPLEXES
申请人:NUEVOLUTION AS
公开号:WO2011127933A1
公开(公告)日:2011-10-20
The present invention is directed to a method for the synthesis of a bi-functional complex comprising a molecule part and an identifier oligonucleotide part identifying the molecule part. A part of the synthesis method according to the present invention is preferably conducted in one or more organic solvents when a nascent bi-functional complex comprising an optionally protected tag or oligonucleotide identifier is linked to a solid support, and another part of the synthesis method is preferably conducted under conditions suitable for enzymatic addition of an oligonucleotide tag to a nascent bi-functional complex in solution.
A new series of 2- and/or 3-substituted pyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides and their 8-chloro derivatives were synthesized, and their benzodiazepine receptor (BZR) affinities were evaluated in vitro in comparison to lead compound 3-ethoxycarbonyl-8-chloropyrazolo[5,1-c][1,2,4]benzotriazine-5-oxide (29) [1,2]. None of the new compounds showed significant affinity for BZR. On the basis of a pharmacophore/receptor model suggested for lead compound 29, some hypotheses to explain the inactivity of new derivatives are discussed. (C) 1999 Elsevier Science S.A. All rights reserved.