摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Tyr-D-Ala-Gly-Phe-D-Leu-OCho

中文名称
——
中文别名
——
英文名称
Tyr-D-Ala-Gly-Phe-D-Leu-OCho
英文别名
[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (2R)-2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoate
Tyr-D-Ala-Gly-Phe-D-Leu-OCho化学式
CAS
——
化学式
C56H83N5O7
mdl
——
分子量
938.304
InChiKey
BAMNICWMMCTZBU-WLKXVHMGSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    11.3
  • 重原子数:
    68
  • 可旋转键数:
    22
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.66
  • 拓扑面积:
    189
  • 氢给体数:
    6
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (2,3,4,5,6-pentafluorophenyl) (2S)-1-(pyridine-3-carbonyl)pyrrolidine-2-carboxylateTyr-D-Ala-Gly-Phe-D-Leu-OCho 在 TEA 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 生成 [(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] (2R)-2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-3-(4-hydroxyphenyl)-2-[[(2S)-1-(pyridine-3-carbonyl)pyrrolidine-2-carbonyl]amino]propanoyl]amino]propanoyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoate
    参考文献:
    名称:
    Brain-Targeted Delivery of a Leucine-enkephalin Analogue by Retrometabolic Design
    摘要:
    A brain-targeted chemical delivery system (CDS) based on retrometabolic drug design was applied to a Leu-enkephalin analogue, Tyr-D-Ala-Gly-Phe-D-Leu (DADLE). The molecular architecture of the peptide CDS disguises its peptide nature from neuropeptide-degrading enzymes and provides lipophilic, bioreversible functions for the penetration through the blood-brain barrier. These functions were provided by a targetor, a 1,4-dihydrotrigonellyl group, on the N-terminus and a bulky, lipophilic ester group on the C-terminus. A spacer amino acid residue was also inserted between the targetor and the parent peptide to assure the release of DADLE by specific enzymes. Four CDSs were synthesized by segment-coupling method that proved to be superior to sequential elongation in obtaining this type of peptide conjugates. Intravenous injection of the compounds produced a significant and long-lasting response in rats monitored by the tail-flick latency measurements. CDSs having the bulkier cholesteryl group showed a better efficacy than those having the smaller 1-adamantaneethyl ester. The spacer was the most important factor to manipulate the rate of DADLE release and, thus, the pharmacological activity; proline as a spacer produced more potent analgesia than alanine. The antinociceptive effect of the CDSs was naloxone-reversible and methylnaloxonium-irreversible, confirming that central opiate receptors were solely responsible for mediating analgesia induced by the peptide CDS that delivered, retained, and then released the peptide in the brain.
    DOI:
    10.1021/jm960356e
  • 作为产物:
    描述:
    BOC-D-亮氨酸 在 TEA 、 benzotriazol-1-yloxyl-tris-(pyrrolidino)-phosphonium hexafluorophosphate 、 N,N-二异丙基乙胺三氟乙酸 作用下, 以 二氯甲烷 为溶剂, 反应 3.5h, 生成 Tyr-D-Ala-Gly-Phe-D-Leu-OCho
    参考文献:
    名称:
    Brain-Targeted Delivery of a Leucine-enkephalin Analogue by Retrometabolic Design
    摘要:
    A brain-targeted chemical delivery system (CDS) based on retrometabolic drug design was applied to a Leu-enkephalin analogue, Tyr-D-Ala-Gly-Phe-D-Leu (DADLE). The molecular architecture of the peptide CDS disguises its peptide nature from neuropeptide-degrading enzymes and provides lipophilic, bioreversible functions for the penetration through the blood-brain barrier. These functions were provided by a targetor, a 1,4-dihydrotrigonellyl group, on the N-terminus and a bulky, lipophilic ester group on the C-terminus. A spacer amino acid residue was also inserted between the targetor and the parent peptide to assure the release of DADLE by specific enzymes. Four CDSs were synthesized by segment-coupling method that proved to be superior to sequential elongation in obtaining this type of peptide conjugates. Intravenous injection of the compounds produced a significant and long-lasting response in rats monitored by the tail-flick latency measurements. CDSs having the bulkier cholesteryl group showed a better efficacy than those having the smaller 1-adamantaneethyl ester. The spacer was the most important factor to manipulate the rate of DADLE release and, thus, the pharmacological activity; proline as a spacer produced more potent analgesia than alanine. The antinociceptive effect of the CDSs was naloxone-reversible and methylnaloxonium-irreversible, confirming that central opiate receptors were solely responsible for mediating analgesia induced by the peptide CDS that delivered, retained, and then released the peptide in the brain.
    DOI:
    10.1021/jm960356e
点击查看最新优质反应信息

文献信息

  • Brain-Targeted Delivery of a Leucine-enkephalin Analogue by Retrometabolic Design
    作者:Katalin Prokai-Tatrai、Laszlo Prokai、Nicholas Bodor
    DOI:10.1021/jm960356e
    日期:1996.1.1
    A brain-targeted chemical delivery system (CDS) based on retrometabolic drug design was applied to a Leu-enkephalin analogue, Tyr-D-Ala-Gly-Phe-D-Leu (DADLE). The molecular architecture of the peptide CDS disguises its peptide nature from neuropeptide-degrading enzymes and provides lipophilic, bioreversible functions for the penetration through the blood-brain barrier. These functions were provided by a targetor, a 1,4-dihydrotrigonellyl group, on the N-terminus and a bulky, lipophilic ester group on the C-terminus. A spacer amino acid residue was also inserted between the targetor and the parent peptide to assure the release of DADLE by specific enzymes. Four CDSs were synthesized by segment-coupling method that proved to be superior to sequential elongation in obtaining this type of peptide conjugates. Intravenous injection of the compounds produced a significant and long-lasting response in rats monitored by the tail-flick latency measurements. CDSs having the bulkier cholesteryl group showed a better efficacy than those having the smaller 1-adamantaneethyl ester. The spacer was the most important factor to manipulate the rate of DADLE release and, thus, the pharmacological activity; proline as a spacer produced more potent analgesia than alanine. The antinociceptive effect of the CDSs was naloxone-reversible and methylnaloxonium-irreversible, confirming that central opiate receptors were solely responsible for mediating analgesia induced by the peptide CDS that delivered, retained, and then released the peptide in the brain.
查看更多