The first B(C6F5)3‐catalyzed deoxygenative reduction of amides into the corresponding amines with readily accessible and stable ammonia borane (AB) as a reducing agent under mild reaction conditions is reported. This metal‐free protocol provides facile access to a wide range of structurally diverse amine products in good to excellent yields, and various functional groups including those that are reduction‐sensitive
据报道,在温和的反应条件下,用易于获得且稳定的氨硼烷(AB)作为还原剂,将酰胺进行的首次B(C 6 F 5)3催化脱氧还原为相应的胺。该无金属方案可轻松获得各种结构多样的胺产品,且收率高至优异,并且对各种官能团(包括对还原敏感的官能团)均具有良好的耐受性。该新方法也适用于手性酰胺底物,而不会破坏对映体的纯度。BF 3 OEt 2助催化剂在该反应中的作用是通过酰胺-硼加合物的原位形成来活化酰胺羰基。
Ru‐Catalyzed Deoxygenative Transfer Hydrogenation of Amides to Amines with Formic Acid/Triethylamine
ruthenium(II)‐catalyzed deoxygenative transfer hydrogenation of amides to amines using HCO2H/NEt3 as the reducing agent is reported for the first time. The catalyst system consisting of [Ru(2‐methylallyl)2(COD)], 1,1,1‐tris(diphenylphosphinomethyl) ethane (triphos) and Bis(trifluoromethane sulfonimide) (HNTf2) performed well for deoxygenative reduction of various secondary and tertiary amides into the corresponding
首次报道了使用HCO 2 H / NEt 3作为还原剂的钌(II)催化的酰胺脱氧转移胺成胺。催化剂体系由[Ru(2-甲基烯丙基)2(COD)],1,1,1-三(二苯基膦甲基)乙烷(triphos)和双(三氟甲烷磺酰亚胺)(HNTf 2)在将各种仲酰胺和叔酰胺脱氧还原成相应的胺方面表现出色,选择性极好,并且对包括还原敏感基团在内的官能团表现出很高的耐受性。氢源和酸助催化剂的选择对于催化至关重要。机理研究表明,通过借入氢对原位生成的醇和胺进行还原胺化是主要途径。
Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes
Methylation of secondary amines was achieved using dimethyl carbonate or diethyl carbonate as the C1 source under the catalysis of well-defined half-sandwich iron complexes bearing an N-heterocyclic carbene ligand. The reaction proceeded under mild conditions in the presence of hydrosilanes as the reductants, and the amines were obtained with good to excellent isolated yields.
Compounds are provided that act as potent antagonists of the CCR2 or CCR9 receptor. Animal testing demonstrates that these compounds are useful for treating inflammation, a hallmark disease for CCR2 and CCR9. The compounds are generally aryl sulfonamide derivatives and are useful in pharmaceutical compositions, methods for the treatment of CCR2-mediated diseases, CCR9-mediated diseases, as controls in assays for the identification of CCR2 antagonists, and as controls in assays for the identification of CCR9 antagonists.
[EN] METHOD FOR PRODUCING THE TRANSITION METAL ION COMPLEX, CATALYST FOR TRIMERIZATION, AND METHOD FOR PRODUCING 1-HEXENE<br/>[FR] PROCÉDÉ DE PRODUCTION D'UN COMPLEXE ION MÉTAL DE TRANSITION, CATALYSEUR DE TRIMÉRISATION, ET PROCÉDÉ DE PRODUCTION DE 1-HEXÈNE
申请人:SUMITOMO CHEMICAL CO
公开号:WO2012133929A1
公开(公告)日:2012-10-04
An object of the present invention is to provide a silicon-bridged Cp-Ar transition metal complex that serves as a catalytic component capable of efficiently and highly selectively producing 1-hexene through the trimerization reaction of ethylene. The present invention provides a transition metal ion complex represented by any of formulae (1-1) to (1-3), etc.: wherein M represents a transition metal atom of Group 4 of the Periodic Table of the Elements; A represents a counter anion; R1, R2, R3, R4, R5, R6, R7, R8, R9, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, X1 and X2 each independently represent a hydrogen atom or the like; R10 and R11 each independently represent a hydrogen atom or the like.