摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tetracene*Kr2 | 145875-13-4

中文名称
——
中文别名
——
英文名称
tetracene*Kr2
英文别名
——
tetracene*Kr2化学式
CAS
145875-13-4
化学式
C18H12*Kr2
mdl
——
分子量
395.893
InChiKey
RLNZBUMKOCGELY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.15
  • 重原子数:
    20.0
  • 可旋转键数:
    0.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为产物:
    描述:
    并四苯氪气 以 gas 为溶剂, 生成 、 tetracene*Kr 、 tetracene*Kr3 、 tetracene*Kr2
    参考文献:
    名称:
    Microscopic solvation effects on excited‐state energetics and dynamics of aromatic molecules in large van der Waals complexes
    摘要:
    In this paper we report the results of an experimental study of the formation kinetics, excited-state energetics, interstate electronic relaxation, and intrastate nuclear dynamics in electronically–vibrationally excited states of van der Waals molecules, consisting of a tetracene (T) molecule and rare-gas (R) atoms. The TRn molecules were synthesized in seeded supersonic jets. Excited-state energetics and dynamics of TRn molecules were explored by laser spectroscopy in supersonic expansions, interrogating the fluorescence action spectra, the energy-resolved emission, the relative emission quantum yields, and the time-resolved emission. Spectroscopic diagnostic methods for the identification and characterization of the chemical composition of TRn complexes involved the dependence of the spectral features on the identity of the rare gas, an intensity conservation rule for the intensities of TArn and of T, the pressure dependence of the intensity of the bare T molecule, the pressure dependence of the intensity of the spectral features of the TRn molecules, and their order of appearance. We were able to identify the following 13 molecules: TArn(n = 1,2,⋅⋅⋅7), TKrn(n = 1,2,3,4), and TXen (n = 1,2), and to assign the spectral features which correspond to the vibrationless S0→S1 excitations of these molecules. For TAr1, TAr2, TAr3, TKr1, and TKr2, a single spectral feature corresponding to each molecule was observed, providing evidence against the existence of distinct chemical isomers of these molecules. For TKr3 and TKr4 a multiple spectrum consisting of several bands for each chemical composition was observed, which was tentatively assigned to chemical isomers of these molecules. The TXe1 and TXe2 spectra reveal, in addition to a main band, weak satellites which were tentatively attributed to vibrational structure. The red spectral shifts of the vibrationless and the 314 cm−1 S0→S1 electronic excitations of all TRn molecules from the corresponding excitation of the bare T molecule are dominated by dispersive interactions, the red shifts for the TR1 (R = Ne, Ar, Kr, and Xe) molecules being proportional to the polarizability of the R atom. The spectral shifts of TRn molecules are not additive per added atom, the violation of the additivity law being attributed to the occupation of geometrically inequivalent sites by the R atoms. To demonstrate the universality of van der Waals molecule formation by large aromatics, we have studied the energetics of T(N2)n (n = 1–3) molecules and obtained preliminary spectroscopic data on T(C6H6) and T(H2O). We have studied, subsequently, microscopic solvent effects on electronic relaxation from the vibrationless S1 state and from the 314 cm−1 vibrational excitation of this state of tetracene embedded in well characterized TRn complexes. The decay lifetimes τ of the vibrationless S1 electronic state of TNe1 and TArn (n = 1,2,...,7) molecules are in the range τ = 17±2 to 34±3 nsec, being close to or somewhat higher than the lifetime τ0 = 19±2 nsec of the electronic origin of the bare T molecule. The lifetimes of the vibrationless level of TKr1, TKr2, TKr3, and TKr4 molecules (τ = 6±1 to 8±1 nsec) and of TXe1 and TXe2 complexes (τ∼1.5 nsec) reveal a dramatic shortening relative to τ0, which is attributed to the heavy atom enhancement of S1→T1 crossing. The lifetimes of TKrn (n = 1–4) and of TXen are practically independent of the coordination number, whereupon the heavy atom enhancement of intersystem crossing in these systems essentially originates from T–Kr and T–Xe single-pair interactions. We also explored some effects of intrastate nuclear dynamics in the S1 state of TArn and of TKrn molecules. We have demonstrated that the 314 cm−1 vibrational excitations of TAr1 and of TKr1 do not result in vibrational predissociation on the (nsec) time scale of the excited-state lifetime, the reactive channel being presumably closed. The heavy atom effect on the decay lifetimes of TKrn was utilized to search for the onset of vibrational predissociation, which is exhibited at excess vibrational energies of 1250 cm−1 above the electronic origin.
    DOI:
    10.1063/1.442426
点击查看最新优质反应信息

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-盐酸沙丁胺醇 (S)-溴烯醇内酯 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-3-(叔丁基)-4-(2,6-二异丙氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-3,3''-双([[1,1''-联苯]-4-基)-[1,1''-联萘]-2,2''-二醇 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-2,2'',3,3''-四氢-6,6''-二-9-菲基-1,1''-螺双[1H-茚]-7,7''-二醇 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (6,6)-苯基-C61己酸甲酯 (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,5R)-3,3a,8,8a-四氢茚并[1,2-d]-1,2,3-氧杂噻唑-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aS,8aR)-2-(吡啶-2-基)-8,8a-二氢-3aH-茚并[1,2-d]恶唑 (3aS,3''aS,8aR,8''aR)-2,2''-环戊二烯双[3a,8a-二氢-8H-茚并[1,2-d]恶唑] (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (3S,3aR)-2-(3-氯-4-氰基苯基)-3-环戊基-3,3a,4,5-四氢-2H-苯并[g]吲唑-7-羧酸 (3R,3’’R,4S,4’’S,11bS,11’’bS)-(+)-4,4’’-二叔丁基-4,4’’,5,5’’-四氢-3,3’’-联-3H-二萘酚[2,1-c:1’’,2’’-e]膦(S)-BINAPINE (3-三苯基甲氨基甲基)吡啶 (3-[(E)-1-氰基-2-乙氧基-2-hydroxyethenyl]-1-氧代-1H-茚-2-甲酰胺) (2′′-甲基氨基-1,1′′-联苯-2-基)甲烷磺酰基铝(II)二聚体 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,4S)-Fmoc-4-三氟甲基吡咯烷-2-羧酸 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环