Synthesis of arabinose glycosyl sulfamides as potential inhibitors of mycobacterial cell wall biosynthesis
摘要:
A series of arabinose glycosyl sulfamides with varying alkyl chain types and lengths were synthesised as mimics of decaprenolphosphoarabinose (DPA), and as potential inhibitors of mycobacterial cell wall biosynthesis. Unprecedented conversion of the desired furanose to the thermodynamically more stable pyranose form occurred during final de-protection. Biological testing against Mycobacterium smegmatis revealed low to moderate anti-mycobacterial activity with marked dependence on alkyl chain length, which in the case of mono-substituted sulfamides was maximal for a C-10 chain. (C) 2015 Elsevier Masson SAS. All rights reserved.
Synthesis of arabinose glycosyl sulfamides as potential inhibitors of mycobacterial cell wall biosynthesis
摘要:
A series of arabinose glycosyl sulfamides with varying alkyl chain types and lengths were synthesised as mimics of decaprenolphosphoarabinose (DPA), and as potential inhibitors of mycobacterial cell wall biosynthesis. Unprecedented conversion of the desired furanose to the thermodynamically more stable pyranose form occurred during final de-protection. Biological testing against Mycobacterium smegmatis revealed low to moderate anti-mycobacterial activity with marked dependence on alkyl chain length, which in the case of mono-substituted sulfamides was maximal for a C-10 chain. (C) 2015 Elsevier Masson SAS. All rights reserved.
A new family of potential oncostatics: 2-chloroethylnitrososulfamides (CENS)—I. Synthesis, structure, and pharmacological evaluation (preliminary results)
A new series of alkylating agents, 2-chloroethylnitrososulfamides (CENS), were developed on the model of 2-chloroethylnitrosoureas. Starting from chlorosulfonyl isocyanate, a four-step synthesis (carbamoylation-sulfamoylation, Mitsunobu alkylation, deprotection, and nitrosation) gives the title compounds in a 47-58% overall yield. The selection of the nitrosation site can be directed through an alternative route. The pharmacological evaluation shows a significant oncostatic activity towards both A549 and MCF7 cell lines. Copyright (C) 1996 Elsevier Science Ltd