摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-bromo-1,4,5,8-tetra(n-butoxycarbonyl)naphthalene | 1224622-74-5

中文名称
——
中文别名
——
英文名称
2-bromo-1,4,5,8-tetra(n-butoxycarbonyl)naphthalene
英文别名
Tetrabutyl 2-bromonaphthalene-1,4,5,8-tetracarboxylate
2-bromo-1,4,5,8-tetra(n-butoxycarbonyl)naphthalene化学式
CAS
1224622-74-5
化学式
C30H39BrO8
mdl
——
分子量
607.539
InChiKey
VWWBKDRGIMYHNK-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    8.3
  • 重原子数:
    39
  • 可旋转键数:
    20
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.53
  • 拓扑面积:
    105
  • 氢给体数:
    0
  • 氢受体数:
    8

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    全氟辛基碘烷2-bromo-1,4,5,8-tetra(n-butoxycarbonyl)naphthalene 作用下, 以 二甲基亚砜 为溶剂, 反应 7.0h, 以66%的产率得到Tetrabutyl 2-(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctyl)naphthalene-1,4,5,8-tetracarboxylate
    参考文献:
    名称:
    Core-Perfluoroalkylated Perylene Diimides and Naphthalene Diimides: Versatile Synthesis, Solubility, Electrochemistry, and Optical Properties
    摘要:
    By a strategy featuring perfluoroalkylation of the highly soluble intermediates and their further efficient transformations to target compounds, a versatile synthesis of core-perfluoroalkylated perylene diimides (PDIs) and naphthalene diimides (NDIs) was developed, and PDIs perfluoroalkylated at 1-position or 1,6-positions and core-perfluoroalkylated NDIs were first obtained. By esterification, perfluoroalkylation, hydrolysis, and condensation with amine, 1-perfluorooctyl-PDIs (7b, 7c, and 7e), 1,7-bis(perfluorooctyl)-PDIs (8a-c and 8e-g), 1,6-bis(perfluorooctyl)PDIs (8'e), a mixture of 1,7-bis(trifluoromethyl)-PDIs and 1,6-bis(trifluoromethyl)-PDIs (11b and 11'b), 11d and 11'd, in a ratio of 19:1), 2-perfluorooctyl-NDIs (20a-d), and 2,6-bis(perfluorooctyl)-NDIs (21a-21d) were efficiently synthesized. Five valuable intermediates-1-perfluorooctylperylene dianhydride (5), 1,7-bis(perfluorooctyl)perylene dianhydride (6) 1,6-bis(perfluorooctyl)perylene dianhydride (6'), 2-perfluorooctylnaphthalene dianhydride (18), and 2,6-bis(perfluorooctyl) naphthalene dianhydride (19)-were also obtained, and they can condense with many amines to produce PDIs containing different functional side chains on the imide nitrogen atoms. Solubility, electrochemistry, and optical properties of the above core-perfluoroalkylated PDIs and NDIs were investigated. Core-perfluoroalkylated 8e, 8f, 8'e, mixture of 11d and 11'd, 20b, and 20d with excellent solubility in common organic solvents are competitive as candidates as solution processable semiconductors. Core-perfluoroalkylated PDIs and NDIs with experimental LUMO energy of 4.04-4.34 eV demonstrate strong electron accepting ability. For core-perfluoroalkylated PDIs, the maximum absorptions display blue shifts of 6-18 nm and the maximum molar extinction coefficients decrease obviously relative to those of unsubstituted PDIs, and they inherit the strong fluorescence from the PDIs family, which makes them promising fluorescent dyes.
    DOI:
    10.1021/jo100231j
  • 作为产物:
    描述:
    正溴丁烷2-溴萘-1,4,5,8-四羧酸1,8:4,5-二酐2,6-二溴萘-1,4,5,8-四羧酸二酐 在 potassium hydroxide 、 四正辛基溴化铵 作用下, 以 为溶剂, 反应 3.5h, 以29%的产率得到2-bromo-1,4,5,8-tetra(n-butoxycarbonyl)naphthalene
    参考文献:
    名称:
    Core-Perfluoroalkylated Perylene Diimides and Naphthalene Diimides: Versatile Synthesis, Solubility, Electrochemistry, and Optical Properties
    摘要:
    By a strategy featuring perfluoroalkylation of the highly soluble intermediates and their further efficient transformations to target compounds, a versatile synthesis of core-perfluoroalkylated perylene diimides (PDIs) and naphthalene diimides (NDIs) was developed, and PDIs perfluoroalkylated at 1-position or 1,6-positions and core-perfluoroalkylated NDIs were first obtained. By esterification, perfluoroalkylation, hydrolysis, and condensation with amine, 1-perfluorooctyl-PDIs (7b, 7c, and 7e), 1,7-bis(perfluorooctyl)-PDIs (8a-c and 8e-g), 1,6-bis(perfluorooctyl)PDIs (8'e), a mixture of 1,7-bis(trifluoromethyl)-PDIs and 1,6-bis(trifluoromethyl)-PDIs (11b and 11'b), 11d and 11'd, in a ratio of 19:1), 2-perfluorooctyl-NDIs (20a-d), and 2,6-bis(perfluorooctyl)-NDIs (21a-21d) were efficiently synthesized. Five valuable intermediates-1-perfluorooctylperylene dianhydride (5), 1,7-bis(perfluorooctyl)perylene dianhydride (6) 1,6-bis(perfluorooctyl)perylene dianhydride (6'), 2-perfluorooctylnaphthalene dianhydride (18), and 2,6-bis(perfluorooctyl) naphthalene dianhydride (19)-were also obtained, and they can condense with many amines to produce PDIs containing different functional side chains on the imide nitrogen atoms. Solubility, electrochemistry, and optical properties of the above core-perfluoroalkylated PDIs and NDIs were investigated. Core-perfluoroalkylated 8e, 8f, 8'e, mixture of 11d and 11'd, 20b, and 20d with excellent solubility in common organic solvents are competitive as candidates as solution processable semiconductors. Core-perfluoroalkylated PDIs and NDIs with experimental LUMO energy of 4.04-4.34 eV demonstrate strong electron accepting ability. For core-perfluoroalkylated PDIs, the maximum absorptions display blue shifts of 6-18 nm and the maximum molar extinction coefficients decrease obviously relative to those of unsubstituted PDIs, and they inherit the strong fluorescence from the PDIs family, which makes them promising fluorescent dyes.
    DOI:
    10.1021/jo100231j
点击查看最新优质反应信息

文献信息

  • Core-Perfluoroalkylated Perylene Diimides and Naphthalene Diimides: Versatile Synthesis, Solubility, Electrochemistry, and Optical Properties
    作者:Zhongyi Yuan、Jing Li、Yi Xiao、Zheng Li、Xuhong Qian
    DOI:10.1021/jo100231j
    日期:2010.5.7
    By a strategy featuring perfluoroalkylation of the highly soluble intermediates and their further efficient transformations to target compounds, a versatile synthesis of core-perfluoroalkylated perylene diimides (PDIs) and naphthalene diimides (NDIs) was developed, and PDIs perfluoroalkylated at 1-position or 1,6-positions and core-perfluoroalkylated NDIs were first obtained. By esterification, perfluoroalkylation, hydrolysis, and condensation with amine, 1-perfluorooctyl-PDIs (7b, 7c, and 7e), 1,7-bis(perfluorooctyl)-PDIs (8a-c and 8e-g), 1,6-bis(perfluorooctyl)PDIs (8'e), a mixture of 1,7-bis(trifluoromethyl)-PDIs and 1,6-bis(trifluoromethyl)-PDIs (11b and 11'b), 11d and 11'd, in a ratio of 19:1), 2-perfluorooctyl-NDIs (20a-d), and 2,6-bis(perfluorooctyl)-NDIs (21a-21d) were efficiently synthesized. Five valuable intermediates-1-perfluorooctylperylene dianhydride (5), 1,7-bis(perfluorooctyl)perylene dianhydride (6) 1,6-bis(perfluorooctyl)perylene dianhydride (6'), 2-perfluorooctylnaphthalene dianhydride (18), and 2,6-bis(perfluorooctyl) naphthalene dianhydride (19)-were also obtained, and they can condense with many amines to produce PDIs containing different functional side chains on the imide nitrogen atoms. Solubility, electrochemistry, and optical properties of the above core-perfluoroalkylated PDIs and NDIs were investigated. Core-perfluoroalkylated 8e, 8f, 8'e, mixture of 11d and 11'd, 20b, and 20d with excellent solubility in common organic solvents are competitive as candidates as solution processable semiconductors. Core-perfluoroalkylated PDIs and NDIs with experimental LUMO energy of 4.04-4.34 eV demonstrate strong electron accepting ability. For core-perfluoroalkylated PDIs, the maximum absorptions display blue shifts of 6-18 nm and the maximum molar extinction coefficients decrease obviously relative to those of unsubstituted PDIs, and they inherit the strong fluorescence from the PDIs family, which makes them promising fluorescent dyes.
查看更多