摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

trisulfide | 12597-05-6

中文名称
——
中文别名
——
英文名称
trisulfide
英文别名
Trisulfide(2-)
trisulfide化学式
CAS
12597-05-6
化学式
S3
mdl
——
分子量
96.198
InChiKey
KBMBVTRWEAAZEY-UHFFFAOYSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.4
  • 重原子数:
    3
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    27.3
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

点击查看最新优质反应信息

文献信息

  • Surface modified mesoporous nanocast carbon as a catalyst for aqueous sulfide oxidation and adsorption of the produced polysulfides
    作者:Deicy Barrera、Fernanda Gomes de Mendonça、Arthur Henrique de Castro、João Paulo de Mesquita、Rochel Montero Lago、Karim Sapag
    DOI:10.1039/c8nj00922h
    日期:——
    In this work, a mesoporous nanocast carbon prepared using SBA-15 as a template was modified by surface oxidation to produce unique catalysts for sulfide oxidation/elimination from an aqueous medium. Different characterization techniques (BET, SEM, Raman, FTIR, potentiometric titration, elemental analyses, cyclic voltammetry) showed that treatment with concentrated HNO3 at 80 °C for 5, 15 and 30 min
    在这项工作中,使用SBA-15作为模板制备的介孔纳米铸碳通过表面氧化进行了改性,以生产用于从水性介质中硫化物氧化/消除的独特催化剂。不同的表征技术(BET,SEM,拉曼光谱,FTIR,电位滴定,元素分析,循环伏安法)显示,在80°C下用浓HNO 3处理5、15和30分钟会攻击碳结构,从而在浓度范围内产生不同的氧气表面功能从0.4–1.1 mmol g -1变化,对表面积(1080–1148 m 2 g -1)和孔体积(微孔0.17–0.20 cm 3 g -1和中孔0.36–0.50 cm 3 g)的影响很小-1)。这些材料在形成多硫化物(例如S 2 2-,S 3 2-和S 4 2-)的水性介质中对硫化物的氧化具有很高的活性,这些多硫化物可从水性介质中迅速消除。讨论了这些结果,涉及在氧化还原表面氧位上有效的硫化物氧化,导致形成较高的多硫化物,然后将这些相对较大和更多疏水性的分子吸附到中孔中。
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Cu: MVol.B3, 191, page 1413 - 1415
    作者:
    DOI:——
    日期:——
  • The catalytic and photocatalytic autoxidation of Sx2− to SO42− by water-soluble cobalt porphyrin
    作者:Shen-Ming Chen、Shiu-Wen Chiu
    DOI:10.1016/s1381-1169(00)00471-4
    日期:2001.2
    The catalytic and photocatalytic transformation of S-4(2-), S-3(2-), S-2(2-) and S2- to SO42- by water-soluble cobalt tetrakis (N-methyl-4-pyridyl) porphyrin (Co(4-TMPyP)) was performed by a two-step process. The catalytic autoxidation of S-x(2-) (x = 2, 3 and 4) to S2O32- by Co(4-TMPyP) in the presence of oxygen was followed by the photocatalytic oxidation of S2O32- by Co(4-TMPyP) under illumination in presence of oxygen at a strong basic solution. The direct transformation of S-x(2-) to SO42- was also performed. The catalytic activity of Co(4-TMPyP) was compared to Fe(2-TMPyP) and Mn(4-TMPyP). All three catalysts have activity towards autoxidation of S42- to S2O32-. The trend in photocatalytic oxidation activity of the porphyrin complexes is Co(4-TMPyP) > Fe(2-TMPyP) > Mn(4-TMPyP). The electrocatalytic reactions of S-x(2-) by Co(4-TMPyP) were also observed. (C) 2001 Elsevier Science B.V. All rights reserved.
  • Towards excellent electrical conductivity and high-rate capability: A degenerate superlattice Ni3(S)1.1(S2)0.9 micropyramids electrode
    作者:Yuanhao Gao、Wensong Zhou、Wei Li、Tuo Cai、Yan Lei、Helin Niu、Pinjiang Li、Hongwei Yue、Zhongjun Li
    DOI:10.1016/j.jallcom.2020.155590
    日期:2020.12
    Degenerate semiconductor is very highly desired in energy conversion and storage technologies due to its metal-like conduction behaviors. This is the first time the doping S-2 in Ni3S2 lattice into chemically homogeneous Ni-3(S)(1.1)(S-2)(0.9) superlattice structure is proposed to induce a degenerate characteristic towards excellent electrical conductivity and high-rate capability. In this study, a series of the chemically homogeneous S-2-doped Ni-3(S)(1.8)(S-2)(0.2), Ni-3(S)(1.6)(S-2)(0.4), Ni-3(S)(1.3)(S-2)(0.7), and Ni-3(S)(1.1)(S-2)(0.9) micropyramid arrays on Ni foam were synthesized by reacting the Ni foam and alkaline sulfur aqueous solution in different S-2(2-) concentrations. The perfect Ni-3(S)(1.1)(S-2)(0.9) superlattice structure corresponds to the periodic S-Ni-S-2 atom arrangements in whole crystal lattice, which endows a degenerate characteristic of metal-like electrical conductivity to significantly improve the electrochemical performance. The bulk series resistance (R-s) value is only 0.62 Omega, while the charge-transfer resistance (R-ct) is nearly 0 Omega in the superlattice Ni-3(S)(1.1)(S-2)(0.9) electrode. As a cathode material for application in lithium ion batteries (LIBs), a very high specific capacity of 874 mAh g(-1) is achieved at current density of 200 mA g(-1). Remarkably, it still holds a high capacity of 565 mAh g(-1) at current density of 500 mA g(-1), indicating its superior high-rate capability. This study reveals that the periodic S-Ni-S-2 atom arrangements in crystal lattice is a key factor in determining the superlattice structure, high specific capacity, and the dynamic behaviors of electron/ion transport. (C) 2020 Elsevier B.V. All rights reserved.
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: S: SVol.4a/b, 5.14, page 496 - 496
    作者:
    DOI:——
    日期:——
查看更多