Potent s-cis-Locked Bithiazole Correctors of ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator Cellular Processing for Cystic Fibrosis Therapy
摘要:
N-(5-(2-(5-Chloro-2-methoxyphenylamino)thiazol-4-yl)-4-methylthiazol-2-yl)pivalamide 1 (compound 15jf) was found previously to correct defective cellular processing of the cystic fibrosis protein Delta F508-CFTR. Eight C4'-C5 C,C-bond-controlling bithiazole analogues of 1 were designed, synthesized, and evaluated to establish that constraining rotation about the bithiazole-tethering has a significant effect on corrector activity. For example, constraining the C4'-C5 bithiazole tether in the s-cis conformation [N-(2-(5-chloro-2-methoxyphenylamino)-7,8-dihydro-6H-cyclohepta[1,2-d:3,4-d']bithiazole-2'-yl)pivalamide, 29] results in improved corrector activity. Heteroatom placement in the bithaizole core is also critical as evidenced by the decisive loss of corrector activity with s-cis constrained N-(2-(5-chloro-2-methoxyphenylamino)-5,6-dihydro-4H-cyclohepta[1,2-d:3,4-d]bithiazole-2'-yl)pivalamide 33. In addition, computational models were utilized to examine the conformational preferences for select model systems. Following our analysis, the "s-cis-locked" cycloheptathiazolothiazole 29 was found to be the most potent bithiazole corrector, with an IC(50) Of similar to 450 nM.
Potent s-cis-Locked Bithiazole Correctors of ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator Cellular Processing for Cystic Fibrosis Therapy
摘要:
N-(5-(2-(5-Chloro-2-methoxyphenylamino)thiazol-4-yl)-4-methylthiazol-2-yl)pivalamide 1 (compound 15jf) was found previously to correct defective cellular processing of the cystic fibrosis protein Delta F508-CFTR. Eight C4'-C5 C,C-bond-controlling bithiazole analogues of 1 were designed, synthesized, and evaluated to establish that constraining rotation about the bithiazole-tethering has a significant effect on corrector activity. For example, constraining the C4'-C5 bithiazole tether in the s-cis conformation [N-(2-(5-chloro-2-methoxyphenylamino)-7,8-dihydro-6H-cyclohepta[1,2-d:3,4-d']bithiazole-2'-yl)pivalamide, 29] results in improved corrector activity. Heteroatom placement in the bithaizole core is also critical as evidenced by the decisive loss of corrector activity with s-cis constrained N-(2-(5-chloro-2-methoxyphenylamino)-5,6-dihydro-4H-cyclohepta[1,2-d:3,4-d]bithiazole-2'-yl)pivalamide 33. In addition, computational models were utilized to examine the conformational preferences for select model systems. Following our analysis, the "s-cis-locked" cycloheptathiazolothiazole 29 was found to be the most potent bithiazole corrector, with an IC(50) Of similar to 450 nM.
Compounds Having Activity in Correcting Mutant-CFTR Processing and Uses Thereof
申请人:Kurth Mark J.
公开号:US20100273839A1
公开(公告)日:2010-10-28
The invention provides compositions, pharmaceutical preparations and methods for increasing activity of a mutant cystic fibrosis transmembrane conductance regulator protein (mutant-CFTR). The compositions pharmaceutical preparations and methods are useful for the study and treatment of disorders associated with mutant-CFTR, such as cystic fibrosis. The compositions and pharmaceutical preparations of the invention may comprise one or more bithiazole-containing compounds of the invention, or an analog or derivative thereof.
Potent <i>s-cis</i>-Locked Bithiazole Correctors of ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator Cellular Processing for Cystic Fibrosis Therapy
作者:Gui Jun Yu、Choong L. Yoo、Baoxue Yang、Michael W. Lodewyk、Liping Meng、Tamer T. El-Idreesy、James C. Fettinger、Dean J. Tantillo、A. S. Verkman、Mark J. Kurth
DOI:10.1021/jm800533c
日期:2008.10.9
N-(5-(2-(5-Chloro-2-methoxyphenylamino)thiazol-4-yl)-4-methylthiazol-2-yl)pivalamide 1 (compound 15jf) was found previously to correct defective cellular processing of the cystic fibrosis protein Delta F508-CFTR. Eight C4'-C5 C,C-bond-controlling bithiazole analogues of 1 were designed, synthesized, and evaluated to establish that constraining rotation about the bithiazole-tethering has a significant effect on corrector activity. For example, constraining the C4'-C5 bithiazole tether in the s-cis conformation [N-(2-(5-chloro-2-methoxyphenylamino)-7,8-dihydro-6H-cyclohepta[1,2-d:3,4-d']bithiazole-2'-yl)pivalamide, 29] results in improved corrector activity. Heteroatom placement in the bithaizole core is also critical as evidenced by the decisive loss of corrector activity with s-cis constrained N-(2-(5-chloro-2-methoxyphenylamino)-5,6-dihydro-4H-cyclohepta[1,2-d:3,4-d]bithiazole-2'-yl)pivalamide 33. In addition, computational models were utilized to examine the conformational preferences for select model systems. Following our analysis, the "s-cis-locked" cycloheptathiazolothiazole 29 was found to be the most potent bithiazole corrector, with an IC(50) Of similar to 450 nM.