Iron-Catalyzed Allylic Arylation of Olefins via C(sp<sup>3</sup>)–H Activation under Mild Conditions
作者:Masaki Sekine、Laurean Ilies、Eiichi Nakamura
DOI:10.1021/ol400056z
日期:2013.2.1
cycloalkene or an allylbenzene derivative into a C–C bond in the presence of a catalytic amount of Fe(acac)3 and a diphosphine ligand at 0 °C. The stereo- and regioselectivity of the reaction, together with deuterium labeling experiments, suggest that C–H bond activation is the slow step in the catalytic cycle preceding the formation of an allyliron intermediate.
oxidative allylic C(sp3)–H arylation by radical relay using a broad range of heteroaryl boronicacids with inexpensive and readily available unactivated terminal and internal olefins. This C(sp2)–C(sp3) allyl coupling has the advantage of using cheap, abundant, and nontoxic Cu2O without the need to use prefunctionalized alkenes, thus offering an alternative method to allylic arylation reactions that employ
Processes of forming Csp2—Csp3 bonds at the allylic carbon of a cyclic allylic compound starting material are disclosed, in which a racemic mixture of a cyclic allylic compound having a leaving group attached to the allylic carbon is reacted with a compound having a nucleophilic carbon atom in the presence of a Rh(I), Pd(II) or Cu(I) pre-catalyst and a chiral ligand. The reaction products containing the newly-formed Csp2—Csp3 bond are generated in high stereoisomeric excess, and may therefore serve as important organic building blocks in the preparation of new agrochemicals and pharmaceuticals.