摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

S,S′-([2,2:5′,2″-terthiophene]-5,5″-diyl) diethanethioate

中文名称
——
中文别名
——
英文名称
S,S′-([2,2:5′,2″-terthiophene]-5,5″-diyl) diethanethioate
英文别名
5,5''-bis(acetylthio)[2,2';5',2'']terthiophene;α,ω-bis(acetylthio)terthiophene;S-[5-[5-(5-acetylsulfanylthiophen-2-yl)thiophen-2-yl]thiophen-2-yl] ethanethioate
S,S′-([2,2:5′,2″-terthiophene]-5,5″-diyl) diethanethioate化学式
CAS
——
化学式
C16H12O2S5
mdl
——
分子量
396.6
InChiKey
BJPRETIPVFQBGA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.6
  • 重原子数:
    23
  • 可旋转键数:
    6
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.12
  • 拓扑面积:
    170
  • 氢给体数:
    0
  • 氢受体数:
    7

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    2,5-二(5-溴噻吩-2-基)噻吩乙酰氯正丁基锂 、 sulfur 作用下, 以 四氢呋喃正己烷 为溶剂, 反应 17.5h, 以16%的产率得到S,S′-([2,2:5′,2″-terthiophene]-5,5″-diyl) diethanethioate
    参考文献:
    名称:
    Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions
    摘要:
    Thermoelectrics are famously challenging to optimize, because of inverse coupling of the Seebeck coefficient and electrical conductivity, both of which control the thermoelectric power factor. Inorganic-organic interfaces provide a promising route for realization of the strong electrical and thermal asymmetries required for thermoelectrics. In this work, transport properties of inorganic-organic interfaces are probed and understood at the molecular scale using the STM-break junction measurement technique, theory, and a class of newly synthesized molecules. We synthesized a series of disubstituted thiophene derivatives varying the length of alkylthio-linkers and the number of thiophene rings. These molecules allow the systematic tuning of electronic resonances within the junction. We observed that these molecules have a decreasing Seebeck coefficient with increasing length of the alkyl chain, while oligothiophene junctions show an increasing Seebeck coefficient with length. We find that thiophene-Au junctions have significantly higher Seebeck coefficients, compared to benzenedithiol (in the range of 7-15 mu V/K). A minimal tight-binding model, including a gateway state associated with the S-Au bond, captures and explains both trends. This work identifies S-Au gateway states as being important and potentially tunable features of junction electronic structure for enhancing the power factor of organic/inorganic interfaces.
    DOI:
    10.1021/cm504254n
点击查看最新优质反应信息

文献信息

  • Electron transport in networks of gold nanoparticles connected by oligothiophene molecular wires
    作者:Shin-ichi Taniguchi、Masaru Minamoto、Michio M. Matsushita、Tadashi Sugawara、Yuzo Kawada、Donald Bethell
    DOI:10.1039/b604732g
    日期:——
    Network structures made of π-conjugated molecular wires of oligothiophene 3mer, or 9mer carrying thiol groups at α,ω-positions, and gold nanoparticles with average diameter of 4 nm were prepared on interdigitated gold electrodes. Observation of the resultant assemblies by means of FE-SEM and TEM revealed that the gold nanoparticles were connected by π-molecular wires to form a network. The networks exhibited thermally activated electron transport at room temperature with activation energies of 21and 45 meV for 3mer- and 9mer-networks, respectively, and these values were almost the same as those of networks connected with non-conjugated molecules having similar lengths. However, the activation energy became very small (∼0.1 meV) at temperatures lower than 30 K and non-linear current–voltage characteristics (I ∝ V3) appeared in π-conjugated networks at 4.2 K. These results suggest that the gold nanoparticles in the networks work as Coulomb islands and the temperature-independent behavior at lower temperatures can be interpreted in terms of a co-tunneling mechanism.
    在相互咬合的金电极上,制备了由寡噻吩 3 聚物或 9 聚物(在 α、ω 位置带有硫醇基团)的 π 共轭分子线和平均直径为 4 纳米的金纳米粒子组成的网络结构。通过 FE-SEM 和 TEM 对所制备的组件进行观察发现,金纳米粒子通过 π 分子线连接形成网络。这些网络在室温下表现出热启动电子传输,3 聚体网络和 9 聚体网络的活化能分别为 21 和 45 meV,这些数值与长度相似的非共轭分子连接的网络几乎相同。然而,在温度低于 30 K 时,活化能变得非常小(∼0.1 meV),并且在 4.2 K 时,π-共轭网络出现了非线性电流-电压特性(I∝V3)。这些结果表明,网络中的金纳米粒子作为库仑岛起作用,并且在较低温度下的行为与温度无关,可以用共隧道机制来解释。
  • Controlling the Thermoelectric Properties of Thiophene-Derived Single-Molecule Junctions
    作者:William B. Chang、Cheng-Kang Mai、Michele Kotiuga、Jeffrey B. Neaton、Guillermo C. Bazan、Rachel A. Segalman
    DOI:10.1021/cm504254n
    日期:2014.12.23
    Thermoelectrics are famously challenging to optimize, because of inverse coupling of the Seebeck coefficient and electrical conductivity, both of which control the thermoelectric power factor. Inorganic-organic interfaces provide a promising route for realization of the strong electrical and thermal asymmetries required for thermoelectrics. In this work, transport properties of inorganic-organic interfaces are probed and understood at the molecular scale using the STM-break junction measurement technique, theory, and a class of newly synthesized molecules. We synthesized a series of disubstituted thiophene derivatives varying the length of alkylthio-linkers and the number of thiophene rings. These molecules allow the systematic tuning of electronic resonances within the junction. We observed that these molecules have a decreasing Seebeck coefficient with increasing length of the alkyl chain, while oligothiophene junctions show an increasing Seebeck coefficient with length. We find that thiophene-Au junctions have significantly higher Seebeck coefficients, compared to benzenedithiol (in the range of 7-15 mu V/K). A minimal tight-binding model, including a gateway state associated with the S-Au bond, captures and explains both trends. This work identifies S-Au gateway states as being important and potentially tunable features of junction electronic structure for enhancing the power factor of organic/inorganic interfaces.
查看更多

同类化合物

试剂2,2'-Thieno[3,2-b]thiophene-2,5-diylbis-3-thiophenecarboxylicacid 苯并[b]噻吩,3-(2-噻嗯基)- 甲基[2,3'-联噻吩]-5-羧酸甲酯 牛蒡子醇 B 十四氟-Alpha-六噻吩 三丁基(5''-己基-[2,2':5',2''-三联噻吩]-5-基)锡 α-四联噻吩 α-六噻吩 α-五联噻吩 α-七噻吩 α,ω-二己基四噻吩 5,5′-双(3-己基-2-噻吩基)-2,2′-联噻吩 α,ω-二己基六联噻吩 Α-八噻吩 alpha-三联噻吩甲醇 alpha-三联噻吩 [3,3-Bi噻吩]-2,2-二羧醛 [2,2’]-双噻吩-5,5‘-二甲醛 [2,2':5',2''-三联噻吩]-5,5''-二基双[三甲基硅烷] [2,2'-联噻吩]-5-甲醇,5'-(1-丙炔-1-基)- [2,2'-联噻吩]-5-甲酸甲酯 [2,2'-联噻吩]-5-乙酸,a-羟基-5'-(1-炔丙基)-(9CI) C-[2,2-二硫代苯-5-基甲基]胺 5’-己基-2,2’-联噻吩-5-硼酸频哪醇酯 5-辛基-1,3-二(噻吩-2-基)-4H-噻吩并[3,4-c]吡咯-4,6(5H)-二酮 5-苯基-2,2'-联噻吩 5-溴5'-辛基-2,2'-联噻吩 5-溴-5′-己基-2,2′-联噻吩 5-溴-5'-甲酰基-2,2':5'2'-三噻吩 5-溴-3,3'-二己基-2,2'-联噻吩 5-溴-3'-癸基-2,2':5',2''-三联噻吩 5-溴-2,2-双噻吩 5-溴-2,2'-联噻吩-5'-甲醛 5-氯-5'-苯基-2,2'-联噻吩 5-氯-2,2'-联噻吩 5-正辛基-2,2'-并噻吩 5-己基-5'-乙烯基-2,2'-联噻吩 5-己基-2,2-二噻吩 5-全氟己基-5'-溴-2,2'-二噻吩 5-全氟己基-2,2′-联噻吩 5-乙酰基-2,2-噻吩基 5-乙氧基-2,2'-联噻吩 5-丙酰基-2,2-二噻吩 5-{[[2,2'-联噻吩]-5-基}噻吩-2-腈 5-[5-(5-己基噻吩-2-基)噻吩-2-基]噻吩-2-羧酸 5-(羟甲基)-[2,2]-联噻吩 5-(噻吩-2-基)噻吩-2-甲腈 5-(5-甲酰基-3-己基噻吩-2-基)-4-己基噻吩-2-甲醛 5-(5-甲基噻吩-2-基)噻吩-2-甲醛 5-(5-噻吩-2-基噻吩-2-基)噻吩-2-羧酸 5-(5-乙炔基噻吩-2-基)噻吩-2-甲醛