Preparative Microfluidic Electrosynthesis of Drug Metabolites
摘要:
In vivo, a drug molecule undergoes its first chemical transformation within the liver via CYP450-catalyzed oxidation. The chemical outcome of the first pass hepatic oxidation is key information to any drug development process. Electrochemistry can be used to simulate CYP450 oxidation, yet it is often confined to the analytical scale, hampering product isolation and full characterization. In an effort to replicate hepatic oxidations, while retaining high throughput at the preparative scale, microfluidic technology and electrochemistry are combined in this study by using a microfluidic electrochemical cell. Several commercial drugs were subjected to continuous-flow electrolysis. They were chosen for their various chemical reactivity: their metabolites in vivo are generated via aromatic hydroxylation, alkyl oxidation, glutathione conjugation, or sulfoxidation. It is demonstrated that such metabolites can be synthesized by flow electrolysis at the 10 to 100 mg scale, and the purified products are fully characterized.
Oxidation of Diclofenac to Reactive Intermediates by Neutrophils, Myeloperoxidase, and Hypochlorous Acid
作者:Gohachiro Miyamoto、Nasir Zahid、Jack P. Uetrecht
DOI:10.1021/tx960190k
日期:1997.4.1
Diclofenac is associated with a low, but significant, incidence of hepatotoxicity and bone marrow toxicity. It has been suggested that this could be due to a reactive acyl glucuronide. An alternative hypothesis is that an oxidative reactive metabolite could be responsible for such reactions and such metabolites formed by the enzymes present in neutrophils could be responsible for bone marrow toxicity. Others had reported the formation of 2,2'-dihydroxyazobenzene during the oxidation of diclofenac by myeloperoxidase/hydrogen peroxide. In contrast, in similar experiments we did not find evidence for the formation of 2,2'-dihydroxyazobenzene, but we did find several products, including a reactive iminoquinone. The same iminoquinone was formed by the oxidation of 5-hydroxydiclofenac. This iminoquinone was also formed by oxidation of diclofenac by HOCl or by activated neutrophils. It reacted with glutathione to form a conjugate. 5-Hydroxydiclofenac is also a major hepatic metabolite of diclofenac, and we found that rat hepatic microsomes oxidized 5-hydroxydiclofenac to the iminoquinone which was trapped with glutathione. This reactive metabolite represents another possible cause of the idiosyncratic reactions associated with the use of diclofenac.
Preparative Microfluidic Electrosynthesis of Drug Metabolites
作者:Romain Stalder、Gregory P. Roth
DOI:10.1021/ml400316p
日期:2013.11.14
In vivo, a drug molecule undergoes its first chemical transformation within the liver via CYP450-catalyzed oxidation. The chemical outcome of the first pass hepatic oxidation is key information to any drug development process. Electrochemistry can be used to simulate CYP450 oxidation, yet it is often confined to the analytical scale, hampering product isolation and full characterization. In an effort to replicate hepatic oxidations, while retaining high throughput at the preparative scale, microfluidic technology and electrochemistry are combined in this study by using a microfluidic electrochemical cell. Several commercial drugs were subjected to continuous-flow electrolysis. They were chosen for their various chemical reactivity: their metabolites in vivo are generated via aromatic hydroxylation, alkyl oxidation, glutathione conjugation, or sulfoxidation. It is demonstrated that such metabolites can be synthesized by flow electrolysis at the 10 to 100 mg scale, and the purified products are fully characterized.