摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tert-butyl 10-amino-2,2-dimethyl-4,11-dioxo-3,15,18,21-tetraoxa-5,12-diazatetracosan-24-oate

中文名称
——
中文别名
——
英文名称
tert-butyl 10-amino-2,2-dimethyl-4,11-dioxo-3,15,18,21-tetraoxa-5,12-diazatetracosan-24-oate
英文别名
Tert-butyl 3-[2-[2-[2-[[2-amino-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoyl]amino]ethoxy]ethoxy]ethoxy]propanoate;tert-butyl 3-[2-[2-[2-[[2-amino-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoyl]amino]ethoxy]ethoxy]ethoxy]propanoate
tert-butyl 10-amino-2,2-dimethyl-4,11-dioxo-3,15,18,21-tetraoxa-5,12-diazatetracosan-24-oate化学式
CAS
——
化学式
C24H47N3O8
mdl
——
分子量
505.652
InChiKey
OCASKOATBTVPSM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.8
  • 重原子数:
    35
  • 可旋转键数:
    22
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    147
  • 氢给体数:
    3
  • 氢受体数:
    9

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Synthesis of SERS active nanoparticles for detection of biomolecules
    摘要:
    Surface Enhanced Raman Scattering (SERS) can be used to detect specific DNA sequences by methods based on hybridisation of oligonucleotide functionalized nanoparticles to complementary DNA sequences. The problem, which has to be overcome to use this technique is that DNA is not strongly SERS active. This is due to the lack of a visible chromophore and presence of the highly negatively charged phosphate backbone, which prevents the electrostatic interaction with the metal surface necessary for the enhancement. To obtain SERS active DNA a label containing a surface seeking group, to allow adsorption of DNA on a metal surface, and a chromophore has to be attached to the DNA strand. Here we report the synthesis of three linkers containing a Raman tag [the following fluorophores were used for this purpose due to the fluorescence quenching ability of metallic nanoparticles: fluorescein, 6-aminofluorescein and tetramethylrhodamine (TAMRA)], surface complexing group (cyclic disulphide thioctic acid) and a chemical functionality for attachment of DNA (carboxyl group). Each of the linkers also contain poly(ethylene glycol) (PEG) (3 mer), which reduces non-specific adsorption of molecules to the surface of the nanoparticles and provides colloidal stability. The synthesized linkers were used to functionalize gold citrate (18 and 50 nm), silver citrate (40 nm) and silver EDTA (35 nm) nanoparticles. All of the conjugates exhibit high stability, gave good SERS responses at laser excitation frequencies of 514 and 633 nm and could be conjugated to amino-modified oligonucleotides in the presence of the commonly used (N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride-EDC center dot HCl with N-hydroxysulfosuccinimide or 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride-DMT MM, which has not been used for bioconjugate preparation previously. This approach is less time consuming and less expensive than previously used protocols and does not require the formation of a mixed layer of oligonucleotides and Raman reporter on the metal surface. Additionally the presence of a reactive functionality within the linker structure makes it possible to conjugate the linker to other biomolecules of interest such as proteins. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.tet.2011.11.053
  • 作为产物:
    参考文献:
    名称:
    Synthesis of SERS active nanoparticles for detection of biomolecules
    摘要:
    Surface Enhanced Raman Scattering (SERS) can be used to detect specific DNA sequences by methods based on hybridisation of oligonucleotide functionalized nanoparticles to complementary DNA sequences. The problem, which has to be overcome to use this technique is that DNA is not strongly SERS active. This is due to the lack of a visible chromophore and presence of the highly negatively charged phosphate backbone, which prevents the electrostatic interaction with the metal surface necessary for the enhancement. To obtain SERS active DNA a label containing a surface seeking group, to allow adsorption of DNA on a metal surface, and a chromophore has to be attached to the DNA strand. Here we report the synthesis of three linkers containing a Raman tag [the following fluorophores were used for this purpose due to the fluorescence quenching ability of metallic nanoparticles: fluorescein, 6-aminofluorescein and tetramethylrhodamine (TAMRA)], surface complexing group (cyclic disulphide thioctic acid) and a chemical functionality for attachment of DNA (carboxyl group). Each of the linkers also contain poly(ethylene glycol) (PEG) (3 mer), which reduces non-specific adsorption of molecules to the surface of the nanoparticles and provides colloidal stability. The synthesized linkers were used to functionalize gold citrate (18 and 50 nm), silver citrate (40 nm) and silver EDTA (35 nm) nanoparticles. All of the conjugates exhibit high stability, gave good SERS responses at laser excitation frequencies of 514 and 633 nm and could be conjugated to amino-modified oligonucleotides in the presence of the commonly used (N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride-EDC center dot HCl with N-hydroxysulfosuccinimide or 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride-DMT MM, which has not been used for bioconjugate preparation previously. This approach is less time consuming and less expensive than previously used protocols and does not require the formation of a mixed layer of oligonucleotides and Raman reporter on the metal surface. Additionally the presence of a reactive functionality within the linker structure makes it possible to conjugate the linker to other biomolecules of interest such as proteins. (C) 2011 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.tet.2011.11.053
点击查看最新优质反应信息

文献信息

  • Synthesis of SERS active nanoparticles for detection of biomolecules
    作者:Joanna Wrzesien、Duncan Graham
    DOI:10.1016/j.tet.2011.11.053
    日期:2012.1
    Surface Enhanced Raman Scattering (SERS) can be used to detect specific DNA sequences by methods based on hybridisation of oligonucleotide functionalized nanoparticles to complementary DNA sequences. The problem, which has to be overcome to use this technique is that DNA is not strongly SERS active. This is due to the lack of a visible chromophore and presence of the highly negatively charged phosphate backbone, which prevents the electrostatic interaction with the metal surface necessary for the enhancement. To obtain SERS active DNA a label containing a surface seeking group, to allow adsorption of DNA on a metal surface, and a chromophore has to be attached to the DNA strand. Here we report the synthesis of three linkers containing a Raman tag [the following fluorophores were used for this purpose due to the fluorescence quenching ability of metallic nanoparticles: fluorescein, 6-aminofluorescein and tetramethylrhodamine (TAMRA)], surface complexing group (cyclic disulphide thioctic acid) and a chemical functionality for attachment of DNA (carboxyl group). Each of the linkers also contain poly(ethylene glycol) (PEG) (3 mer), which reduces non-specific adsorption of molecules to the surface of the nanoparticles and provides colloidal stability. The synthesized linkers were used to functionalize gold citrate (18 and 50 nm), silver citrate (40 nm) and silver EDTA (35 nm) nanoparticles. All of the conjugates exhibit high stability, gave good SERS responses at laser excitation frequencies of 514 and 633 nm and could be conjugated to amino-modified oligonucleotides in the presence of the commonly used (N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride-EDC center dot HCl with N-hydroxysulfosuccinimide or 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride-DMT MM, which has not been used for bioconjugate preparation previously. This approach is less time consuming and less expensive than previously used protocols and does not require the formation of a mixed layer of oligonucleotides and Raman reporter on the metal surface. Additionally the presence of a reactive functionality within the linker structure makes it possible to conjugate the linker to other biomolecules of interest such as proteins. (C) 2011 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物