摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

thiophenyl (E)-2-hexenoate

中文名称
——
中文别名
——
英文名称
thiophenyl (E)-2-hexenoate
英文别名
S-phenyl (E)-hex-2-enethioate
thiophenyl (E)-2-hexenoate化学式
CAS
——
化学式
C12H14OS
mdl
——
分子量
206.309
InChiKey
JNSJUVKMOQKGFJ-BJMVGYQFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4
  • 重原子数:
    14
  • 可旋转键数:
    5
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    42.4
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    辅酶 Athiophenyl (E)-2-hexenoate四氢呋喃 、 aq. phosphate buffer 为溶剂, 以20%的产率得到(2E)-hexenoyl-coenzyme A
    参考文献:
    名称:
    组合化学在抗霉素生物合成中的复用:分子多样性和实用性的扩展
    摘要:
    通过使用多重组合生物合成,完成了抗霉素样化合物库(共380个)的面向多样性的生物合成。核心策略取决于在不同生物合成阶段使用组合化学。该方法适用于聚酮化合物,非核糖体肽以及具有相似生物合成逻辑的杂种的多样化。
    DOI:
    10.1002/anie.201305569
  • 作为产物:
    描述:
    phenylthio-carbonyl-methylenetriphenylphosphorane正丁醛甲苯 为溶剂, 反应 48.0h, 以69.9%的产率得到thiophenyl (E)-2-hexenoate
    参考文献:
    名称:
    组合化学在抗霉素生物合成中的复用:分子多样性和实用性的扩展
    摘要:
    通过使用多重组合生物合成,完成了抗霉素样化合物库(共380个)的面向多样性的生物合成。核心策略取决于在不同生物合成阶段使用组合化学。该方法适用于聚酮化合物,非核糖体肽以及具有相似生物合成逻辑的杂种的多样化。
    DOI:
    10.1002/anie.201305569
点击查看最新优质反应信息

文献信息

  • Gold-Catalyzed Oxidation of Thioalkynes To Form Phenylthio Ketene Derivatives via a Noncarbene Route
    作者:Pankaj Sharma、Rahulkumar Rajmani Singh、Sovan Sundar Giri、Liang-Yu Chen、Mu-Jeng Cheng、Rai-Shung Liu
    DOI:10.1021/acs.orglett.9b01768
    日期:2019.7.19
    Gold-catalyzed oxidations of thioalkynes with 8-methylquinoline oxides afford 2-phenylthioketenes that can be trapped efficiently with alcohols. The synthetic utility is manifested by terminal and internal thioalkynes over a wide scope, bearing esters, ketones, alkyl, and oxime substituents. Our density functional theory calculations suggest that gold-catalyzed oxidations of terminal and internal thioalkynes
    金催化的8-甲基喹啉氧化物氧化硫代炔烃可生成2-苯基硫代烯酮,可被醇有效地捕集。末端和内部的硫代炔烃在广泛的范围内带有酯,酮,烷基和肟取代基,从而显示出合成的效用。我们的密度泛函理论计算表明,用8-甲基喹啉氧化物对末端和内部硫代炔烃进行金催化的氧化反应可生成与金键合的乙烯酮中间体,而无需使用α-氧代金卡宾。
  • Enantioselective Synthesis of 3,4-Dihydropyran-2-ones via Phase-Transfer-Catalyzed Addition–Cyclization of Acetylacetone to Cinnamic Thioesters
    作者:Dario Destro、Carlo Bottinelli、Ludovica Ferrari、Domenico C. M. Albanese、Grazia Bencivenni、Malachi W. Gillick-Healy、Brian G. Kelly、Mauro F. A. Adamo
    DOI:10.1021/acs.joc.9b03216
    日期:2020.4.17
    Herein, we present the first example of synthesis of 3,4-dihydropyran-2-ones from cinnamic thioesters via a stereoselective phase-transfer-catalyzed domino Michael-cyclization reaction with acetylacetone. The reaction proceeded under the catalysis of Cinchona-derived quaternary ammonium phenoxide that, in combination with inorganic bases, provided 3,4-dihydropyran-2-ones in yields of up to 93% and enantioselectivities of up to 88% enantiomeric excess.
  • Regioselective control of the thiocarbonylation of terminal acetylenes with arylthiols catalyzed by Pd(II) and diphosphine ligands
    作者:B El Ali、J Tijani、A El-Ghanam、M Fettouhi
    DOI:10.1016/s0040-4039(00)02169-9
    日期:2001.2
    Control of the regioselective thiocarbonylation of terminal acetylenes 1a-e with arylthiols 2a,b was successfully achieved by using Pd(OAc)(2) and 1,4-bis(diphenylphosphino)butane (dppb), or 1,3-bis(diphenylphosphino)propane (dppp), as catalysts. The formation of the thioesters 3 or 4 depends mainly on the type of ligand (dppp or dppb) and the solvent (THF or CH2Cl2) under CO/H+ or syngas mixture. (C) 2001 Elsevier Science Ltd. All rights reserved.
  • Multiplexing of Combinatorial Chemistry in Antimycin Biosynthesis: Expansion of Molecular Diversity and Utility
    作者:Yan Yan、Jing Chen、Lihan Zhang、Qingfei Zheng、Ying Han、Hua Zhang、Daozhong Zhang、Takayoshi Awakawa、Ikuro Abe、Wen Liu
    DOI:10.1002/anie.201305569
    日期:2013.11.18
    Diversity‐oriented biosynthesis of a library of antimycin‐like compounds (380 altogether) was accomplished by using multiplex combinatorial biosynthesis. The core strategy depends on the use of combinatorial chemistry at different biosynthetic stages. This approach is applicable for the diversification of polyketides, nonribosomal peptides, and the hybrids that share a similar biosynthetic logic.
    通过使用多重组合生物合成,完成了抗霉素样化合物库(共380个)的面向多样性的生物合成。核心策略取决于在不同生物合成阶段使用组合化学。该方法适用于聚酮化合物,非核糖体肽以及具有相似生物合成逻辑的杂种的多样化。
  • Identification of Middle Chain Fatty Acyl-CoA Ligase Responsible for the Biosynthesis of 2-Alkylmalonyl-CoAs for Polyketide Extender Unit
    作者:Takeshi Miyazawa、Shunji Takahashi、Akihiro Kawata、Suresh Panthee、Teruo Hayashi、Takeshi Shimizu、Toshihiko Nogawa、Hiroyuki Osada
    DOI:10.1074/jbc.m115.677195
    日期:2015.11
    Background: Fatty acyl-CoA ligases involved in polyketide biosynthesis remain uncharacterized.Results: RevS classified in fatty acyl-AMP ligase clade was the middle chain fatty acyl-CoA ligase.Conclusion: RevS was responsible for 2-alkylmalonyl-CoA biosynthesis through enzyme coupling with RevT carboxylase/reductase.Significance: 2-Alkylmalonyl-CoA biosynthesis was strongly supported by the function of RevR and RevS, which utilized fatty acids derived from de novo biosynthesis and degradation products, respectively.Understanding the biosynthetic mechanism of the atypical polyketide extender unit is important for the development of bioactive natural products. Reveromycin (RM) derivatives produced by Streptomyces sp. SN-593 possess several aliphatic extender units. Here, we studied the molecular basis of 2-alkyl-malonyl- CoA formation by analyzing the revR and revS genes, which form a transcriptional unit with the revT gene, a crotonyl-CoA carboxylase/reductase homolog. We mainly focused on the uncharacterized adenylate-forming enzyme (RevS). revS gene disruption resulted in the reduction of all RM derivatives, whereas reintroduction of the gene restored the yield of RMs. Although RevS was classified in the fatty acyl-AMP ligase clade based on phylogenetic analysis, biochemical characterization revealed that the enzyme catalyzed the middle chain fatty acyl-CoA ligase (FACL) but not the fatty acyl-AMP ligase activity, suggesting the molecular evolution for acyl-CoA biosynthesis. Moreover, we examined the in vitro conversion of fatty acid into 2-alkylmalonyl-CoA using purified RevS and RevT. The coupling reaction showed efficient conversion of hexenoic acid into butylmalonyl-CoA. RevS efficiently catalyzed C8-C10 middle chain FACL activity; therefore, we speculated that the acyl-CoA precursor was truncated via beta-oxidation and converted into (E)-2-enoyl-CoA, a RevT substrate. To determine whether the beta-oxidation process is involved between the RevS and RevT reaction, we performed the feeding experiment using [1,2,3,4-C-13] octanoic acid. C-13 NMR analysis clearly demonstrated incorporation of the [3,4-C-13] octanoic acid moiety into the structure of RM-A. Our results provide insight into the role of uncharacterized RevS homologs that may catalyze middle chain FACL to produce a unique polyketide extender unit.
查看更多

同类化合物

硫基丙酸苯酯 硫代乙酸S-[4-[二(2-氯乙基)氨基]苯基]酯 硫代乙酸 S-(2-乙基苯基)酯 乙硫酸,[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]-,S-苯基酯 S1,S2-二(4-氯苯基)乙烷二(硫代ate) S-苯基硫代异丁酸酯 S-苯基3-羟基硫代丁酸酯 S-苯基2-氟硫代乙酸酯 S-硫代乙酸苯酯 S-氯乙酰基-P-巯基甲苯 S-丙酰基-p-疏基甲苯 S-[4-[2-[4-(2-苯乙炔基)苯基]乙炔基]苯基]硫代乙酸酯 S-(三氟乙酰基)-4-疏基甲苯 S-(4-甲基苯基)硫代乙酸酯 S,S′-[1,4-亚苯基二(2,1-乙炔二基-4,1-亚苯基)]双(硫代乙酸酯) O-乙基S-(4-甲基苯基)单硫代草酸酯 4-溴苯基硫代乙酸酯 4-(S-乙酰基硫代)苯甲醛 4,4-二甲基-1-氧代-1-(苯基硫基)-2-戊烷基乙酸酯 3-氧代-3-(4-甲氧基苯氧基)丙酸 2-甲基苯硫酚乙酸酯 1-乙酰巯基-4-碘苯 S-(2-methoxyphenyl) 4-cyclopropylidenebutanethioate phenyl 3-methyl-2-cyclohexene-1-carbothioate S-(2-fluorophenyl) 2-methylpropanethioate 2-isopropylidenedithiosuccinic acid di-S-(4-fluorophenyl) ester thioacetic acid S-(4-ethyl-phenyl ester) S-phenyl 2,3-dimethyl-2-butenethioate 3-phenylsulfanylcarbonyl-propionic acid ethyl ester S-phenyl (3r,5r,7r)-adamantane-1-carbothioate (E)-S-Phenyl 4,4-dimethylpent-2-enethioate S-phenyl 2-(2-methoxyphenyl)ethanethioate S-phenyl (2R,3R)-3-(tert-butyldimethylsiloxy)-2-methyl-3-phenylpropanethioate S-(4-fluorophenyl) thiopivalate S-phenyl 2-methylbutanethioate S-phenyl 3-(phenyl((trimethylsilyl)oxy)amino)-3-(thiophen-2-yl)propanethioate S-phenyl 3-(4-bromophenyl)-3-(phenyl((trimethylsilyl)oxy)amino)propanethioate S-phenyl 3-phenyl-3-(phenyl((triethylsilyl)oxy)amino)propanethioate S-phenyl 3-cyclohexyl-3-(phenyl((trimethylsilyl)oxy)amino)propanethioate S-phenyl 3-(((tert-butyldimethylsilyl)oxy)(phenyl)amino)-3-phenylpropanethioate S-phenyl 3-(4-methoxyphenyl)-3-(phenyl((trimethylsilyl)oxy)amino)propanethioate S-phenyl 3-(phenyl((trimethylsilyl)oxy)amino)-3-(p-tolyl)propanethioate S-phenyl 3-(4-fluorophenyl)-3-(phenyl((trimethylsilyl)oxy)amino)propanethioate S-phenyl 3-phenyl-3-(phenyl((trimethylsilyl)oxy)amino)propanethioate (E)-S-phenyl 5-phenyl-3-(phenyl((trimethylsilyl)oxy)amino)pent-4-enethioate S-phenyl 3-hydroxy-3-(4-methoxyphenyl)propanethioate S-phenyl 2-methyl-3-oxobutanethioate S-phenyl O-acetyl(thioglycolate) 6-Nitro-9-oxodecansaeure-phenylthioester 2-isopropylidenedithiosuccinic acid di-S-p-tolyl ester