Structure activity relationships, multidrug resistance reversal and selectivity of heteroarylphenyl ABCG2 inhibitors
摘要:
An overexpression of the transmembrane ATP-binding cassette transporter G2 (ABCG2, BCRP) in cancer tissues is supposed to play a role in the multidrug resistance (MDR) of tumors resulting in an inefficient chemotherapy. Therefore, co-administration of selective and non-toxic ABCG2 inhibitors is a promising strategy for improving the efficacy of chemotherapy by blocking ABCG2-mediated export of the cytostatic drugs. In the present study, we designed a small library of 38 novel compounds containing a heteroaryl-phenyl scaffold possessing several (bioisosteric) moieties, and twelve new precursors. We investigated the library for ABCG2 inhibition, for the selectivity against MDR-involved efflux pump ABCBI (P-gp) and for toxicity. Structure activity relationship (SAR) studies revealed that, at least a phenylheteroaryl-phenylamide scaffold is necessary for observing an ABCG2 inhibition. 4-Methoxy-N-(2(2-(6-methoxypyridin-3-yl)-2H-tetrazol-5-yl)phenyl)benzamide (43) exhibited a high potency (IC50 = 61 nM)), selectivity, low intrinsic toxicity and reversed the ABCG2-mediated drug resistance in presence of only 0.1 mu M. (C) 2018 Elsevier Masson SAS. All rights reserved.
Structure activity relationships, multidrug resistance reversal and selectivity of heteroarylphenyl ABCG2 inhibitors
作者:Sebastian C. Köhler、Sahel Vahdati、Matthias S. Scholz、Michael Wiese
DOI:10.1016/j.ejmech.2018.01.012
日期:2018.2
An overexpression of the transmembrane ATP-binding cassette transporter G2 (ABCG2, BCRP) in cancer tissues is supposed to play a role in the multidrug resistance (MDR) of tumors resulting in an inefficient chemotherapy. Therefore, co-administration of selective and non-toxic ABCG2 inhibitors is a promising strategy for improving the efficacy of chemotherapy by blocking ABCG2-mediated export of the cytostatic drugs. In the present study, we designed a small library of 38 novel compounds containing a heteroaryl-phenyl scaffold possessing several (bioisosteric) moieties, and twelve new precursors. We investigated the library for ABCG2 inhibition, for the selectivity against MDR-involved efflux pump ABCBI (P-gp) and for toxicity. Structure activity relationship (SAR) studies revealed that, at least a phenylheteroaryl-phenylamide scaffold is necessary for observing an ABCG2 inhibition. 4-Methoxy-N-(2(2-(6-methoxypyridin-3-yl)-2H-tetrazol-5-yl)phenyl)benzamide (43) exhibited a high potency (IC50 = 61 nM)), selectivity, low intrinsic toxicity and reversed the ABCG2-mediated drug resistance in presence of only 0.1 mu M. (C) 2018 Elsevier Masson SAS. All rights reserved.