Modern industrial and agricultural practices generate large quantities of aromatic pollutants; however, these waste products can be converted into fine chemicals, fuels, and plastics through biocatalytic pathways. The bacterial world can inform such utilization strategies as certain strains of soil and marine bacteria metabolize environmentally derived aromatics. Many of these metabolic pathways involve aryl intermediates that require demethylation to facilitate modification and ring opening for assimilation into the tricarboxylic acid (TCA) cycle. Aryl demethylases, which catalyze this reaction, are poorly understood, making their utilization in biotechnology difficult. We provide the structural and mechanistic characterization of a single-domain aryl demethylase, LigM, which employs a tyrosine-dependent mechanism. Insights from this work will inform synthetic biology approaches to convert underutilized aromatics into higher value compounds.