The current greening of chemical production processes going along with a rising interest for the utilization of biogenic feedstocks recently revived the research to find new ways for the degradation of the complex lignin-backbone by means of biocatalysis and combined chemo-enzymatic catalysis. Lignin, which accumulates in 50 million t/a, is regarded as a potential substitute for phenolic and other aromatic, oil-based chemicals in the upcoming post oil age. The cleavage of the β-O-4-aryl ether linkage is the most favoured, since it accounts for approximately 50% of all ether linkages in lignin. This enzymatic cleavage was proposed to be a part of the lignin catabolism in the proteobacterium Sphingobium sp. SYK6. Three enzymes, LigD, a Cα-dehydrogenase, LigF, a β-etherase and LigG, a glutathione lyase, are supposed to be involved in lignin degradation. We cloned and recombinantly expressed these genes in E. coli and determined their pH and temperature optima on the lignin model substrate 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol 1. Using an NAD+ dependent glutathione reductase from Allochromatium vinosum (AVR) we established an efficient way to regenerate the co-substrates NAD+ and glutathione allowing for a self-sufficient balanced enzymatic cascade with net internal hydrogen transfer (hydrogen borrowing). We showed the capability of this enzyme system to release lignin monomers from complex lignin structures coming from differently prepared real lignin substrates. This novel enzyme system could become a useful tool to release lignin monomers from complex lignin structures.
随着
化学生产过程的绿色化以及对
生物源原料利用兴趣的上升,研究人员最近重新关注利用
生物催化和联合
化学-酶催化的新方法来降解复杂的
木质素骨架。
木质素的年累积量达到5000万吨,被视为即将到来的后石油时代中替代
酚类及其他芳香油基
化学品的潜在材料。
木质素中的β-O-4-芳基醚键的断裂是最受欢迎的,因为它大约占
木质素中所有醚键的50%。这种酶促断裂被认为是放线菌Sphingobium sp. SYK6中
木质素分解代谢的一部分。三种酶,LigD(α-去氢酶)、LigF(β-醚化酶)和LigG(
谷胱甘肽裂解酶),被认为参与
木质素的降解。我们在大肠杆菌中克隆和
重组表达了这些
基因,并测定了它们在
木质素模型底物1-(
4-羟基-3-
甲氧基苯基)-
2-(2-甲氧基苯氧基)-1,3-丙二醇 1上的pH和温度最优值。通过使用来自Allochromatium vinosum(AVR)的
NAD+依赖性
谷胱甘肽还原酶,我们建立了一种有效的方式来再生辅助底物
NAD+和
谷胱甘肽,从而实现自给自足的平衡酶级联反应(氢借用)。我们展示了这一酶系统从不同准备的真实
木质素底物中释放
木质素单体的能力。这个新型酶系统可能成为从复杂
木质素结构中释放
木质素单体的有用工具。