作者:Andrew Bell、Emmanuele Severi、Micah Lee、Serena Monaco、Dimitrios Latousakis、Jesus Angulo、Gavin H. Thomas、James H. Naismith、Nathalie Juge
DOI:10.1074/jbc.ra120.014454
日期:2020.10
The human gut symbiontRuminococcus gnavusscavenges host-derivedN-acetylneuraminic acid (Neu5Ac) from mucins by converting it to 2,7-anhydro-Neu5Ac. We previously showed that 2,7-anhydro-Neu5Ac is transported intoR. gnavusATCC 29149 before being converted back to Neu5Ac for further metabolic processing. However, the molecular mechanism leading to the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac remained elusive. Using 1D and 2D NMR, we elucidated the multistep enzymatic mechanism of the oxidoreductase (RgNanOx) that leads to the reversible conversion of 2,7-anhydro-Neu5Ac to Neu5Ac through formation of a 4-keto-2-deoxy-2,3-dehydro-N-acetylneuraminic acid intermediate and NAD(+)regeneration. The crystal structure ofRgNanOx in complex with the NAD(+)cofactor showed a protein dimer with a Rossman fold. Guided by theRgNanOx structure, we identified catalytic residues by site-directed mutagenesis. Bioinformatics analyses revealed the presence ofRgNanOx homologues across Gram-negative and Gram-positive bacterial species and co-occurrence with sialic acid transporters. We showed by electrospray ionization spray MS that theEscherichia colihomologue YjhC displayed activity against 2,7-anhydro-Neu5Ac and thatE. colicould catabolize 2,7-anhydro-Neu5Ac. Differential scanning fluorimetry analyses confirmed the binding of YjhC to the substrates 2,7-anhydro-Neu5Ac and Neu5Ac, as well as to co-factors NAD and NADH. Finally, usingE. colimutants and complementation growth assays, we demonstrated that 2,7-anhydro-Neu5Ac catabolism inE. colidepended on YjhC and on the predicted sialic acid transporter YjhB. These results revealed the molecular mechanisms of 2,7-anhydro-Neu5Ac catabolism across bacterial species and a novel sialic acid transport and catabolism pathway inE. coli.