Selective Synthesis of 5- or 6-Aryl Octahydrocyclopenta[b]pyrroles from a Common Precursor through Control of Competing Pathways in a Pd-Catalyzed Reaction
摘要:
The Pd/phosphine-catalyzed reaction of 1 with aryl bromides leads to the selective synthesis of either 6-aryl octahydrocyclopenta[b]pyrroles (3), the corresponding 5-aryl isomers 5, diarylamine 2, or hexahydrocyclopenta[b]pyrrole 4 depending on the structure of the phosphine ligand. These transformations are effective with a variety of different aryl bromides and provide 3-5 with excellent levels of diastereo-selectivity (dr >= 20:1). The changes in product distribution are believed to derive from the influence of Pd-catalyst structure on the relative rates of reductive elimination, beta-hydride elimination, alkene insertion, and alkene displacement processes in a mechanistically complex reaction. The effect of phosphine ligand structure on product distribution is described in detail, along with analysis of a proposed mechanism for these transformations.
Selective Synthesis of 5- or 6-Aryl Octahydrocyclopenta[b]pyrroles from a Common Precursor through Control of Competing Pathways in a Pd-Catalyzed Reaction
摘要:
The Pd/phosphine-catalyzed reaction of 1 with aryl bromides leads to the selective synthesis of either 6-aryl octahydrocyclopenta[b]pyrroles (3), the corresponding 5-aryl isomers 5, diarylamine 2, or hexahydrocyclopenta[b]pyrrole 4 depending on the structure of the phosphine ligand. These transformations are effective with a variety of different aryl bromides and provide 3-5 with excellent levels of diastereo-selectivity (dr >= 20:1). The changes in product distribution are believed to derive from the influence of Pd-catalyst structure on the relative rates of reductive elimination, beta-hydride elimination, alkene insertion, and alkene displacement processes in a mechanistically complex reaction. The effect of phosphine ligand structure on product distribution is described in detail, along with analysis of a proposed mechanism for these transformations.
Use of Aryl Chlorides as Electrophiles in Pd-Catalyzed Alkene Difunctionalization Reactions
作者:Brandon R. Rosen、Joshua E. Ney、John P. Wolfe
DOI:10.1021/jo100344k
日期:2010.4.16
The development of conditions that allow use of inexpensive aryl chlorides as electrophiles in Pd-catalyzedalkenecarboamination and carboetherification reactions is described. A catalyst composed of Pd(OAc)2 and S-Phos minimizes N-arylation of the substrate and prevents formation of mixtures of regioisomeric products. A number of heterocycles, including pyrrolidines, isoxazolidines, tetrahydrofurans