IDENTIFICATION AND USE: Cybutryne is used as a booster algicide in antifouling paint. HUMAN STUDIES: Cybutryne induces HepG2 cell apoptosis through mitochondrial dysfunction and oxidative stress. ANIMAL STUDIES: Cybutryne inhibits the ATP synthesis. The analysis of the various steps involved in the ATP synthesis suggests that the inhibition is due to the opening of small-size pores. ECOTOXICITY STUDIES: When tested on early developmental stages of marine invertebrates cybutryne was found to be the least toxic among other commonly used 'booster'' biocides. However, it was more toxic when tested on the growth of autotrophic species. The toxicity of cybutryne towards periphyton and phytoplankton was shown to be higher than that of atrazine. It induced spermiotoxicity and embryotoxicity at environmentally relevant concentrations in Pacific oyster (Crassostrea gigas) gametes or embryos. It had a significant impact on meiofauna abundance, even at the lowest concentrations, causing a drastic decline in the abundance of nematodes (the dominant meiofaunal taxon) and an increase of the relative importance of oligochaetes. Other study evaluated the effects of cybutryne toxicity on the exoskeleton of Metanephrops japonicus, which is the outer layer facing the environment. Ecdysteroid receptor (Mj-EcR), trypsin (Mj-Tryp), and serine proteinase (Mj-SP) in the hepatopancreas were upregulated in response to different exposure levels of the biocide at day 1, 4, or 7. In contrast, gill Mj-chi5, Mj-Tryp, and Mj-SP exhibited late upregulated responses to 10 ug/L compared to the control at day 7. Mj-chi1 showed early upregulation upon exposure to 10 ug/L and Mj-chi4 showed no changes in transcription in the gill. Gill Mj-EcR presented generally downregulated expression patterns. In addition, decreased survival and change of exoskeleton surface roughness were observed in M. japonicus exposed to the three concentrations of the biocide. Separate studies have shown that cybutryne inhibits coral photosynthesis at environmentally relevant concentrations, consistent with its mode of action as a photosystem II inhibitor.
Three of the most commonly used antifouling booster biocides that are usually combined with copper or copper compounds are Irgarol 1051, Diuron, and Zn pyrithione. This study represents an assessment of the interactive effects of the antifouling biocides combined with each other, and with three heavy metals (Cu, Cd, and Zn) in binary mixtures, on the marine algae Chaetoceros gracilis. Seventy-two hour growth inhibition tests were carried out, and the IC50 values of the chemicals were determined along with growth inhibition (%) for several concentrations. The joint effect of the binary mixtures of all the chemicals was assessed by using two models, concentration addition model and the model of probabilities. The following increasing order of toxicity was obtained: Cd < Zn < Cu < Diuron < Zn pyrithione < Irgarol 1051. The interactive effects of the organic chemicals combined with each other on the growth of Ch. gracilis were firmly synergistic. Irgarol 1051 combined with Cd performed synergistic effects, and Zn pyrithione with copper and cadmium action was strictly antagonistic, and the results of the two models were in agreement in almost all mixtures.
Single and joint effects of two antifouling booster biocides, Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) and diuron (1-(3,4 dichlorophenyl)-3,3 dimethyl urea), their metabolites, M1 (2-methylthio-4-tert-butylamino-s-triazine), DCPMU (1-(3,4-dichlorophenyl)-3 methyl urea), DCPU (1-(3,4 dichlorophenyl urea) and DCA (3,4-dichloroaniline), respectively, as well as copper were examined. Two phytoplanktonic microorganisms, the green alga Dunaliella tertiolecta and the diatom Navicula forcipata were exposed to various concentrations of the aforementioned compounds both alone and in binary mixtures during a period of 96 hr. Estimation of EC(50) values was performed by daily cell number counting of the tested microorganisms. The toxicity of the six compounds and the metal, applied singly, was found to be, in decreasing order, Irgarol 1051>diuron>M1>DCPMU>DCA>Cu>DCPU and Irgarol 1051>diuron>M1>DCA for the green alga and the diatom, respectively. Diatoms were found to be more sensitive in the presence of all the tested compounds, except diuron. Co-existence of irgarol 1051 and M1 revealed additive effects on both microorganisms. Same results were observed owing to the joint action of copper with either Irgarol 1051 or M1 for almost all the examined mixtures. Combined effects of diuron with its metabolites DCPMU and DCA resulted in synergism in almost all cases, for both species of phytoplankton. On the contrary, antagonistic effects were observed owing to the joint action of copper with either diuron or one of its metabolites.
Tides and freshwater inflow which influence water movement in estuarine areas govern the exposure-regime of pollutants. In this experiment, we examined the in situ impact of double pulses of copper and the herbicide Irgarol 1051 on the photosynthesis of the seagrass, Zostera capricorni. Despite a 4-day recovery period between the two 10 hr pulses of toxicant, the effective quantum yield of photosystem II (DeltaF/Fm') and total chlorophyll concentrations indicated that multiple-pulses had a greater impact than a single pulse. During the first exposure period, samples exposed to Irgarol 1051 had DeltaF/Fm' values as low as zero while controls remained around 0.6 relative units. After the second exposure period, treated samples recovered to only 0.4 relative units. Samples exposed to copper had DeltaF/Fm' values around 0.3 relative units during the first exposure period and while these samples recovered before the second dose, they remained below 0.2 relative units after the second exposure period. Alternate samples were also exposed to one toxicant, allowed to recover and then exposed to the other toxicant. DeltaF/Fm' values indicated that copper exposure followed by Irgarol 1051 exposure was more toxic than Irgarol 1051 exposure followed by copper exposure.
The herbicides Irgarol 1051 (2-(tert-butylamino)-4-cyclopropylamino)-6-(methylthio)-1,3,5-triazine) and Diuron (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) are commonly incorporated into antifouling paints to boost the efficacy of the compound towards algae. Previous investigations have identified environmental concentrations of these herbicides as being a threat to non-target organisms, such as seagrasses. Their individual toxicity has been assessed, but they can co-occur and interact, potentially increasing their toxicity and the threat posed to seagrass meadows. Chlorophyll fluorescence (Fv:Fm) and leaf specific biomass ratio (representing plant growth) were examined in Zostera marina L. after a 10-day exposure to the individual herbicides. The EC20 for each herbicide was determined and these then used in herbicide mixtures to assess their interactive effects. Irgarol 1051 was found to be more toxic than Diuron with lowest observable effect concentrations for Fv:Fm reduction of 0.5 and 1.0 +/- ug/L and 10-day EC50 values of 1.1 and 3.2 ug/L, respectively. Plants exposed to Irgarol 1051 and Diuron showed a significant reduction in growth at concentrations of 1.0 and 5.0 ug/L, respectively. When Z. marina was exposed to mixtures, the herbicides commonly interacted additively or antagonistically, and no significant further reduction in photosynthetic efficiency was found at any concentration when compared to plants exposed to the individual herbicides. However, on addition of the Diuron EC20 to varying Irgarol 1051 concentrations and the Irgarol 1051 EC20 to varying Diuron concentrations, significant reductions in Fv:Fm were noted at an earlier stage. The growth of plants exposed to Diuron plus the Irgarol 1051 EC20 were significantly reduced when compared to plants exposed to Diuron alone, but only at the lower concentrations. Growth of plants exposed to Irgarol 1051 and the Diuron EC20 showed no significant reduction when compared to the growth of plants exposed to Irgarol 1051 alone. Despite the addition of the EC20 not eliciting a further significant reduction when compared to the herbicides acting alone for most of the mixtures, the lowest observable significant effect concentration for growth and photosynthetic efficiency decreased to 0.5 ug/L for both herbicides. Irgarol 1051 and Diuron have been shown to occur together in concentrations above 0.5 ug/L, suggesting that seagrasses may be experiencing reduced photosynthetic efficiency and growth as a result.
Integrated photocatalytic-biological treatment of triazine-containing pollutants
摘要:
The degradation of triazine-containing pollutants including simazine, Irgarol (R) 1051 and Reactive Brilliant Red K-2G (K-2G) by photocatalytic treatment was investigated. The effects of titanium dioxide (TiO2) concentration, initial pH of reaction mixture, irradiation time and ultraviolet (UV) intensity on photo-catalytic treatment efficiency were examined. Complete decolorization of K-2G was observed at 60 min photodegradation while only 15 min were required to completely degrade simazine and Irgarol (R) 1051 under respective optimized conditions. High-performance liquid chromatography (HPLC), gas chromatography/mass spectrometry (GC/MS) and ion chromatography (IC) were employed to identify the photocatalytic degradation intermediates and products. Dealkylated intermediates of simazine, deisopropylatrazine and deethyldeisopropylatrazine, and Irgarol (R) 1051 were detected by GC/MS in the initial phase of degradation. Complete mineralization could not be achieved for all triazine-containing pollutants even after prolonged (>72 h) UV irradiation due to the presence of a photocatalysis-resistant end product, cyanuric acid (CA). The toxicities of different compounds before and after photocatalytic treatment were also monitored by three bioassays. To further treat the photocatalysis-resistant end product, a CA-degrading bacterium was isolated from polluted marine sediment and further identified as Kiebsiella pneumoniae by comparing the substrate utilization pattern (Biologna (TM) microplate), fatty acid composition and 165 rRNA gene sequencing. K. pneumoniae efficiently utilized CA from 1 to 2000 mg/L as a good nitrogen source and complete mineralization of CA was observed within 24 h of incubation. This study demonstrates that the biodegradability of triazine-containing pollutants was significantly improved by the photocatalytic pre-treatment, and this proposed photocatalytic-biological integrated system can effectively treat various classes of triazine-containing pollutants. (C) 2019 Elsevier Ltd. All rights reserved.
Compounds of formula I
wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts and all stereoisomers and tautomeric forms of the compounds of formula I can be used as insecticides and can be prepared in a manner known per se.
Molecules having pesticidal utility, and intermediates, compositions, and processes, related thereto
申请人:Dow AgroSciences LLC
公开号:US20180279612A1
公开(公告)日:2018-10-04
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions against such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula (“Formula One”).
[EN] MOLECULES HAVING PESTICIDAL UTILITY, AND INTERMEDIATES, COMPOSITIONS, AND PROCESSES, RELATED THERETO<br/>[FR] MOLÉCULES PRÉSENTANT UNE UTILITÉ EN TANT QUE PESTICIDE, ET LEURS INTERMÉDIAIRES, COMPOSITIONS ET PROCÉDÉS
申请人:DOW AGROSCIENCES LLC
公开号:WO2017040194A1
公开(公告)日:2017-03-09
This disclosure relates to the field of molecules having pesticidal utility against pests in Phyla Arthropoda, Mollusca, and Nematoda, processes to produce such molecules, intermediates used in such processes, pesticidal compositions containing such molecules, and processes of using such pesticidal compositions aga inst such pests. These pesticidal compositions may be used, for example, as acaricides, insecticides, miticides, molluscicides, and nematicides. This document discloses molecules having the following formula ("Formula One").