Formation of α-Dicarbonyl Compounds in Beer during Storage of Pilsner
摘要:
With the aim of determining the formation of alpha-dicarbonyl intermediates during beer aging on the shelf, alpha-dicarbonyls were identified and quantified after derivatization with 1,2-diaminobenze to generate quinoxalines. The sensory effects of alpha-dicarbonyls were evaluated by the quantification of key Strecker aldehydes and by GC-olfactometry (GCO)analysis of beer headspace using solid phase microextraction. Four alpha-dicarbonyls, reported here for the first time, were detected in fresh and aged beers, three were derived from the 2,3-enolization pathway of mono- and disaccharides, and the fourth was derived from the epimerization of 3-deoxy-2-hexosulose. Ten alpha-dicarbonyls were quantified during beer processing and during different periods of beer aging at 28 degrees C. The aging periods were from 15 to 105 days. During beer aging, 1-deoxydiuloses were produced and degraded, while 1,4-dideoxydiuloses were produced at the highest rates. The GCO analysis indicated that forced beer aging increased the amounts of furaneol, trans-2-nonenal, and phenylacetaldehyde. The blockage of alpha-dicarbonyls inhibited the accumulation of sensory-active aldehydes in the beer headspace.
Formation of α-Dicarbonyl Compounds in Beer during Storage of Pilsner
作者:Adriana Bravo、Julio C. Herrera、Erika Scherer、Yon Ju-Nam、Heinrich Rübsam、Jorge Madrid、Carsten Zufall、Rafael Rangel-Aldao
DOI:10.1021/jf703696p
日期:2008.6.1
With the aim of determining the formation of alpha-dicarbonyl intermediates during beer aging on the shelf, alpha-dicarbonyls were identified and quantified after derivatization with 1,2-diaminobenze to generate quinoxalines. The sensory effects of alpha-dicarbonyls were evaluated by the quantification of key Strecker aldehydes and by GC-olfactometry (GCO)analysis of beer headspace using solid phase microextraction. Four alpha-dicarbonyls, reported here for the first time, were detected in fresh and aged beers, three were derived from the 2,3-enolization pathway of mono- and disaccharides, and the fourth was derived from the epimerization of 3-deoxy-2-hexosulose. Ten alpha-dicarbonyls were quantified during beer processing and during different periods of beer aging at 28 degrees C. The aging periods were from 15 to 105 days. During beer aging, 1-deoxydiuloses were produced and degraded, while 1,4-dideoxydiuloses were produced at the highest rates. The GCO analysis indicated that forced beer aging increased the amounts of furaneol, trans-2-nonenal, and phenylacetaldehyde. The blockage of alpha-dicarbonyls inhibited the accumulation of sensory-active aldehydes in the beer headspace.