在任何药物发现计划中,获得足够的组织暴露在作用部位,以实现对目标的期望药效是一个重要的决定因素,对于在中枢神经系统深处的寡核苷酸来说尤其具有挑战性。在这里,我们报告了立体纯的含磷酸鸟嘌呤骨架连接(PN连接)对通过RNase H介导机制作用的寡核苷酸的合成和影响,以Malat1和C9orf72为基准。我们发现,将各种类型的PN连接纳入立体纯的寡核苷酸骨架中,与类似修改的立体纯磷硫酸酯(PS)和磷酸二酯(PO)基分子相比,在自由吸收条件下可以使培养神经元的沉默效果提高10倍。其中一种骨架类型称为PN-1,在小剂量下也可以在小鼠的大脑和脊髓中产生深远的沉默效果,在难以到达的脑组织中特别提高了反应的效力和持久性。鉴于这些在临床前模型中的优势,将PN连接纳入带有嵌合骨架修饰的立体纯寡核苷酸中,有可能使脊髓以外的大脑区域更易受到寡核苷酸的影响,从而也可能扩大适用于寡核苷酸治疗的神经学指示的范围。
Attaining sufficient tissue exposure at the site of action to achieve the desired pharmacodynamic effect on a target is an important determinant for any drug discovery program, and this can be particularly challenging for oligonucleotides in deep tissues of the CNS. Herein, we report the synthesis and impact of stereopure phosphoryl guanidine-containing backbone linkages (PN linkages) to oligonucleotides acting through an RNase H-mediated mechanism, using Malat1 and C9orf72 as benchmarks. We found that the incorporation of various types of PN linkages to a stereopure oligonucleotide backbone can increase potency of silencing in cultured neurons under free-uptake conditions 10-fold compared with similarly modified stereopure phosphorothioate (PS) and phosphodiester (PO)-based molecules. One of these backbone types, called PN-1, also yielded profound silencing benefits throughout the mouse brain and spinal cord at low doses, improving both the potency and durability of response, especially in difficult to reach brain tissues. Given these benefits in preclinical models, the incorporation of PN linkages into stereopure oligonucleotides with chimeric backbone modifications has the potential to render regions of the brain beyond the spinal cord more accessible to oligonucleotides and, consequently, may also expand the scope of neurological indications amenable to oligonucleotide therapeutics.
在任何药物发现计划中,获得足够的组织暴露在作用部位,以实现对目标的期望药效是一个重要的决定因素,对于在中枢神经系统深处的寡核苷酸来说尤其具有挑战性。在这里,我们报告了立体纯的含磷酸鸟嘌呤骨架连接(PN连接)对通过RNase H介导机制作用的寡核苷酸的合成和影响,以Malat1和C9orf72为基准。我们发现,将各种类型的PN连接纳入立体纯的寡核苷酸骨架中,与类似修改的立体纯磷硫酸酯(PS)和磷酸二酯(PO)基分子相比,在自由吸收条件下可以使培养神经元的沉默效果提高10倍。其中一种骨架类型称为PN-1,在小剂量下也可以在小鼠的大脑和脊髓中产生深远的沉默效果,在难以到达的脑组织中特别提高了反应的效力和持久性。鉴于这些在临床前模型中的优势,将PN连接纳入带有嵌合骨架修饰的立体纯寡核苷酸中,有可能使脊髓以外的大脑区域更易受到寡核苷酸的影响,从而也可能扩大适用于寡核苷酸治疗的神经学指示的范围。