Dual potent ALK and ROS1 inhibitors combating drug-resistant mutants: Synthesis and biological evaluation of aminopyridine-containing diarylaminopyrimidine derivatives
摘要:
To identify ALK and ROS1 dual inhibitors conferring resistance to ALK secondary mutations, especially 'gatekeeper' L1196 M and the most predominant ceritinib-resistant G1202R mutations, a series of novel 2,4-diarylaminopyrimidine analogues were designed and synthesized by incorporating 2-alkoxy-6-alicyclic aminopyridinyl motifs. The biological evaluations on cellular and enzymatic assays led to identification of compound F-1, which turned out to be effective against ALK(WT), ROS1(WT), ALK(L1196M) and ALK(G1202R) kinases with IC50 of 2.1 nM, 2.3 nM, 1.3 nM and 3.9 nM, respectively, superior to crizotinib and ceritinib. Moreover, F-1 exhibited significant cytotoxicity on ALK-addicted Karpas299, H2228, and Ba/F3 cell expressing G1202R mutant, as well as ROS1-positive HCC78 cell with IC50 values ranging from 10 nM to 43 nM. Notably, F-1 was capable of suppressing phospho-ALK and its relative downstream signaling pathways, and eventually, inducing cell apoptosis in a dose-dependent manner in Karpas-299 cell. Together, F-1 is validated as a promising ALK/ROS1 dual inhibitor great potential for G1202R ALK mutation cancers. (C) 2018 Elsevier Masson SAS. All rights reserved.
Aiming to develop promising ALK inhibitors, two series of N-2-(2-alkyoxy-6-aliphatic aminopyridin-3-yl)-2,4-diaminepyrimidine derivatives (22a-x and 23a-d) were designed according to scaffold hopping and bioisosterism principles. All compounds were efficiently synthesized by concise reactions and anti-proliferative activities on ALK-addicted H2228, Karpas299 cells and EGFR-expressive A549 cell were evaluated by MTT assay. Several compounds exhibited potential cytotoxic activities with IC50 values below 0.10 mu M. Five compounds (22g, 22h, 22l, 22s and 23a) were selected for further enzymatic determination, resulting in the discovery of 22l against ALK and ALK(L1196M) with IC50 values of 2.1 nM and 3.8 nM. Particularly, western blot and cell apoptosis assays identified 22l as a promising ALK inhibitor, which was capable of obviously inhibiting cellular ALK activity and inducing cell apoptosis. Eventually, molecular docking modes of 22l with ALK confirmed structural basis in accordance with the SARs analysis.