Luminescent bis(benzo[<i>d</i>]thiazolyl)quinoxaline: facile synthesis, nucleic acid and protein BSA interaction, live-cell imaging, biopharmaceutical research and cancer theranostic application
A series of luminescent bis(benzo[d]thiazolyl)quinoxalines have been synthesized and their fluorescence properties, anticancer potency, DNA and BSA interactions, cellular uptake, and metabolic stabilities are investigated.
We synthesized 12 derivatives of 2,3-bis(bromomethyl) quinoxaline with substituents at the 6-and/or 7-positions, and evaluated their activities against bacteria and fungi. Of the 12 compounds, nine (1a-h, 1j, and 1k) showed antibacterial activity. The derivative 1g, which bears a trifluoromethyl group at the 6-position, showed the highest activity against Gram-positive bacteria, while 1c, which has a fluoro-group at the 6-position, showed the widest antifungal activity spectrum. However, only the derivative with an ethyl ester substitution, 1k showed activity against Gram-negative bacteria. (C) 2012 Elsevier Inc. All rights reserved.
In water organic synthesis: Introducing itaconic acid as a recyclable acidic promoter for efficient and scalable synthesis of quinoxaline derivatives at room temperature
作者:Kashyap J. Tamuli、Shyamalendu Nath、Manobjyoti Bordoloi
DOI:10.1002/jhet.4231
日期:2021.4
Substituted quinoxalinederivatives are traditionally synthesized by co‐condensation of various starting materials. Herein, we describe a novel environmentally benign in water synthetic route for the synthesis of structurally and electronically diverse ninety quinoxalines with readily available substituted o‐phenylenediamine and 1,2‐diketones using cheap and biodegradable itaconic acid as a mild acid
Quinoxaline derivatives having bis(fluoromethyl), bis(chloromethyl), or bis(iodomethyl) groups at the 2- and 3-positions, and various electron-donating/withdrawing substituents at the 6- and/or 7-positions, were synthesized. Their antibacterial and antifungal activities were evaluated by means of minimum inhibitory concentration assays. The relationships between the substituents and the antimicrobial activities of the quinoxaline derivatives indicate that the electrophilicity of the halomethyl units plays an important role in generating the antimicrobial activity.