Material Safety Data Sheet Section 1. Identification of the substance Product Name: 2-Chloro-4-pyrrolidinopyridine Synonyms: 2-Chloro-4-(pyrrolidin-1-yl)pyridine Section 2. Hazards identification Harmful by inhalation, in contact with skin, and if swallowed. Section 3. Composition/information on ingredients. Ingredient name: 2-Chloro-4-pyrrolidinopyridine CAS number: 874758-84-6 Section 4. First aid measures Skin contact: Immediately wash skin with copious amounts of water for at least 15 minutes while removing contaminated clothing and shoes. If irritation persists, seek medical attention. Eye contact: Immediately wash skin with copious amounts of water for at least 15 minutes. Assure adequate flushing of the eyes by separating the eyelids with fingers. If irritation persists, seek medical attention. Inhalation: Remove to fresh air. In severe cases or if symptoms persist, seek medical attention. Ingestion: Wash out mouth with copious amounts of water for at least 15 minutes. Seek medical attention. Section 5. Fire fighting measures In the event of a fire involving this material, alone or in combination with other materials, use dry powder or carbon dioxide extinguishers. Protective clothing and self-contained breathing apparatus should be worn. Section 6. Accidental release measures Personal precautions: Wear suitable personal protective equipment which performs satisfactorily and meets local/state/national standards. Respiratory precaution: Wear approved mask/respirator Hand precaution: Wear suitable gloves/gauntlets Skin protection: Wear suitable protective clothing Eye protection: Wear suitable eye protection Methods for cleaning up: Mix with sand or similar inert absorbent material, sweep up and keep in a tightly closed container for disposal. See section 12. Environmental precautions: Do not allow material to enter drains or water courses. Section 7. Handling and storage Handling: This product should be handled only by, or under the close supervision of, those properly qualified in the handling and use of potentially hazardous chemicals, who should take into account the fire, health and chemical hazard data given on this sheet. Store in closed vessels. Storage: Section 8. Exposure Controls / Personal protection Engineering Controls: Use only in a chemical fume hood. Personal protective equipment: Wear laboratory clothing, chemical-resistant gloves and safety goggles. General hydiene measures: Wash thoroughly after handling. Wash contaminated clothing before reuse. Section 9. Physical and chemical properties Appearance: Not specified Boiling point: No data No data Melting point: Flash point: No data Density: No data Molecular formula: C9H11ClN2 Molecular weight: 182.7 Section 10. Stability and reactivity Conditions to avoid: Heat, flames and sparks. Materials to avoid: Oxidizing agents. Possible hazardous combustion products: Carbon monoxide, nitrogen oxides, hydrogen chloride. Section 11. Toxicological information No data. Section 12. Ecological information No data. Section 13. Disposal consideration Arrange disposal as special waste, by licensed disposal company, in consultation with local waste disposal authority, in accordance with national and regional regulations. Section 14. Transportation information Non-harzardous for air and ground transportation. Section 15. Regulatory information No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302, or have known CAS numbers that exceed the threshold reporting levels established by SARA Title III, Section 313.
Pyrrolidine-Containing Polypyridines: New Ligands for Improved Visible Light Absorption by Ruthenium Complexes
摘要:
A range of new electron-releasing pyrrolidine-containing bipyridines and terpyridines has been prepared via selective metalation-cross-coupling sequences. The obtained ligands have been involved in microwave-assisted ruthenium complexation leading to homoleptic complexes in high yield. The electron-donor effect of the pyrrolidine nucleus led to a notable improvement of visible light absorption and strong changes in the electrochemical behavior, opening new opportunities for the design of photovoltaic devices.
Pyrrolidine-Containing Polypyridines: New Ligands for Improved Visible Light Absorption by Ruthenium Complexes
摘要:
A range of new electron-releasing pyrrolidine-containing bipyridines and terpyridines has been prepared via selective metalation-cross-coupling sequences. The obtained ligands have been involved in microwave-assisted ruthenium complexation leading to homoleptic complexes in high yield. The electron-donor effect of the pyrrolidine nucleus led to a notable improvement of visible light absorption and strong changes in the electrochemical behavior, opening new opportunities for the design of photovoltaic devices.
Preparative-Scale Synthesis of Vedejs Chiral DMAP Catalysts
作者:Artis Kinens、Simonas Balkaitis、Edgars Suna
DOI:10.1021/acs.joc.8b01687
日期:2018.10.19
A scalable synthesis of chiral Vedejs-type DMAP catalysts is reported. The key step of the synthesis is amination of the enantiomerically pure 4-chloropyridine derivative using well-defined ZnCl2(amine)2 complexes. A series of Zn(II)–amine complexes have been synthesized to explore the scope of the ZnCl2-mediated amination of 4-halopyridines. Mechanistic studies support a Zn(II)-facilitated nucleophilic