摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tert-butyl ((2S,3R)-3-hydroxy-4-(N-((2S)-2-methylbutyl)benzo[d]thiazole-6-sulfonamido)-1-phenylbutan-2-yl)carbamate | 1026701-54-1

中文名称
——
中文别名
——
英文名称
tert-butyl ((2S,3R)-3-hydroxy-4-(N-((2S)-2-methylbutyl)benzo[d]thiazole-6-sulfonamido)-1-phenylbutan-2-yl)carbamate
英文别名
tert-butyl N-[(1S,2R)-3-[1,3-benzothiazol-6-ylsulfonyl-[(2S)-2-methylbutyl]amino]-1-benzyl-2-hydroxy-propyl]carbamate;tert-butyl N-[(2S,3R)-4-[1,3-benzothiazol-6-ylsulfonyl-[(2S)-2-methylbutyl]amino]-3-hydroxy-1-phenylbutan-2-yl]carbamate
tert-butyl ((2S,3R)-3-hydroxy-4-(N-((2S)-2-methylbutyl)benzo[d]thiazole-6-sulfonamido)-1-phenylbutan-2-yl)carbamate化学式
CAS
1026701-54-1
化学式
C27H37N3O5S2
mdl
——
分子量
547.74
InChiKey
VTCMXYXSCZKKKB-WDJPJFJCSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.3
  • 重原子数:
    37
  • 可旋转键数:
    13
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.48
  • 拓扑面积:
    145
  • 氢给体数:
    2
  • 氢受体数:
    8

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量
    • 1
    • 2

反应信息

  • 作为反应物:
    描述:
    tert-butyl ((2S,3R)-3-hydroxy-4-(N-((2S)-2-methylbutyl)benzo[d]thiazole-6-sulfonamido)-1-phenylbutan-2-yl)carbamate三氟乙酸 作用下, 以 二氯甲烷 为溶剂, 生成 N-((2R,3S)-3-amino-2-hydroxy-4-phenylbutyl)-N-((S)-2-methylbutyl)benzo[d]thiazole-6-sulfonamide
    参考文献:
    名称:
    用于对抗耐药性的新型 HIV-1 蛋白酶抑制剂的设计、合成以及生物学和结构评估
    摘要:
    一系列新的 HIV-1 蛋白酶抑制剂 (PI) 是使用一种通用策略设计的,该策略将基于计算结构的设计与底物包络约束相结合。PI 将具有无环和环状杂原子官能团的各种醇衍生的 P2 氨基甲酸酯结合到 ( R )-羟乙胺等排体中。大多数新的 PI 显示出对野生型 HIV-1 蛋白酶和三种多重耐药 (MDR) 变体的有效结合亲和力。特别是,含有 2,2-二氯乙酰胺、吡咯烷酮、咪唑烷酮和 恶唑烷酮部分的抑制剂在 P2 处对K i最有效皮摩尔范围内的值。几种新的 PI 对来自 HIV-1 进化枝 A、B 和 C 以及两种 MDR 变体的患者来源的野生型病毒表现出纳摩尔级的抗病毒效力。四种有效抑制剂的晶体结构分析表明,新 P2 部分的羰基促进了与蛋白酶不变的 Asp29 残基的广泛氢键相互作用。这些构效关系的发现可用于设计具有增强的酶抑制和抗病毒效力的新 PI。
    DOI:
    10.1021/jm300238h
  • 作为产物:
    参考文献:
    名称:
    用于对抗耐药性的新型 HIV-1 蛋白酶抑制剂的设计、合成以及生物学和结构评估
    摘要:
    一系列新的 HIV-1 蛋白酶抑制剂 (PI) 是使用一种通用策略设计的,该策略将基于计算结构的设计与底物包络约束相结合。PI 将具有无环和环状杂原子官能团的各种醇衍生的 P2 氨基甲酸酯结合到 ( R )-羟乙胺等排体中。大多数新的 PI 显示出对野生型 HIV-1 蛋白酶和三种多重耐药 (MDR) 变体的有效结合亲和力。特别是,含有 2,2-二氯乙酰胺、吡咯烷酮、咪唑烷酮和 恶唑烷酮部分的抑制剂在 P2 处对K i最有效皮摩尔范围内的值。几种新的 PI 对来自 HIV-1 进化枝 A、B 和 C 以及两种 MDR 变体的患者来源的野生型病毒表现出纳摩尔级的抗病毒效力。四种有效抑制剂的晶体结构分析表明,新 P2 部分的羰基促进了与蛋白酶不变的 Asp29 残基的广泛氢键相互作用。这些构效关系的发现可用于设计具有增强的酶抑制和抗病毒效力的新 PI。
    DOI:
    10.1021/jm300238h
点击查看最新优质反应信息

文献信息

  • Design, Synthesis, and Biological and Structural Evaluations of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance
    作者:Maloy Kumar Parai、David J. Huggins、Hong Cao、Madhavi N. L. Nalam、Akbar Ali、Celia A. Schiffer、Bruce Tidor、Tariq M. Rana
    DOI:10.1021/jm300238h
    日期:2012.7.26
    A series of new HIV-1 protease inhibitors (PIs) were designed using a general strategy that combines computational structure-based design with substrate-envelope constraints. The PIs incorporate various alcohol-derived P2 carbamates with acyclic and cyclic heteroatomic functionalities into the (R)-hydroxyethylamine isostere. Most of the new PIs show potent binding affinities against wild-type HIV-1
    一系列新的 HIV-1 蛋白酶抑制剂 (PI) 是使用一种通用策略设计的,该策略将基于计算结构的设计与底物包络约束相结合。PI 将具有无环和环状杂原子官能团的各种醇衍生的 P2 氨基甲酸酯结合到 ( R )-羟乙胺等排体中。大多数新的 PI 显示出对野生型 HIV-1 蛋白酶和三种多重耐药 (MDR) 变体的有效结合亲和力。特别是,含有 2,2-二氯乙酰胺、吡咯烷酮、咪唑烷酮和 恶唑烷酮部分的抑制剂在 P2 处对K i最有效皮摩尔范围内的值。几种新的 PI 对来自 HIV-1 进化枝 A、B 和 C 以及两种 MDR 变体的患者来源的野生型病毒表现出纳摩尔级的抗病毒效力。四种有效抑制剂的晶体结构分析表明,新 P2 部分的羰基促进了与蛋白酶不变的 Asp29 残基的广泛氢键相互作用。这些构效关系的发现可用于设计具有增强的酶抑制和抗病毒效力的新 PI。
  • HIV-1 Protease Inhibitors from Inverse Design in the Substrate Envelope Exhibit Subnanomolar Binding to Drug-Resistant Variants
    作者:Michael D. Altman、Akbar Ali、G. S. Kiran Kumar Reddy、Madhavi N. L. Nalam、Saima Ghafoor Anjum、Hong Cao、Sripriya Chellappan、Visvaldas Kairys、Miguel X. Fernandes、Michael K. Gilson、Celia A. Schiffer、Tariq M. Rana、Bruce Tidor
    DOI:10.1021/ja076558p
    日期:2008.5.1
    The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the best binders, from a K(i) of 30-50 nM in round one to below 100 pM in round two. Crystal structures of a subset of complexes revealed a binding mode similar to each design that respected the substrate envelope in nearly all cases. All four best binders from round one exhibited broad specificity against a clinically relevant panel of drug-resistant HIV-1 protease variants, losing no more than 6-13-fold affinity relative to wild type. Testing a subset of second-round compounds against the panel of resistant variants revealed three classes of inhibitors: robust binders (maximum affinity loss of 14-16-fold), moderate binders (35-80-fold), and susceptible binders (greater than 100-fold). Although for especially high-affinity inhibitors additional factors may also be important, overall, these results suggest that designing inhibitors using the substrate envelope may be a useful strategy in the development of therapeutics with low susceptibility to resistance.
  • Additivity in the Analysis and Design of HIV Protease Inhibitors
    作者:Robert N. Jorissen、G. S. Kiran Kumar Reddy、Akbar Ali、Michael D. Altman、Sripriya Chellappan、Saima G. Anjum、Bruce Tidor、Celia A. Schiffer、Tariq M. Rana、Michael K. Gilson
    DOI:10.1021/jm8009525
    日期:2009.2.12
    We explore the applicability of an additive treatment of substituent effects to the analysis and design of HIV protease inhibitors. Affinity data for a set of inhibitors with a common chemical framework were analyzed to provide estimates of the free energy contribution of each chemical substituent. These estimates were then used to design new inhibitors whose high affinities were confirmed by synthesis and experimental testing. Derivations of additive models by least-squares and ridge-regression methods were found to yield statistically similar results. The additivity approach was also compared with standard molecular descriptor-based QSAR; the latter was not found to provide superior predictions. Crystallographic studies of HIV protease-inhibitor complexes help explain the perhaps surprisingly high degree of substituent additivity in this system, and allow some of the additivity coefficients to be rationalized on a structural basis.
  • Substrate Envelope-Designed Potent HIV-1 Protease Inhibitors to Avoid Drug Resistance
    作者:Madhavi N.L. Nalam、Akbar Ali、G.S. Kiran Kumar Reddy、Hong Cao、Saima G. Anjum、Michael D. Altman、Nese Kurt Yilmaz、Bruce Tidor、Tariq M. Rana、Celia A. Schiffer
    DOI:10.1016/j.chembiol.2013.07.014
    日期:2013.9
    The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (Pis) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed Pis share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed Pis retain robust binding to MDR protease variants and display exceptional antiviral potencies against different clades of HIV as well as a panel of 12 drug-resistant viral strains. The substrate envelope model proves to be a powerful strategy to develop potent and robust inhibitors that avoid drug resistance.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐