Convincing Evidence, Not Involving Cyclizable Radical Probes, That the Reaction of LiAlH4 with Hindered Alkyl Iodides Proceeds Predominantly by a Single Electron Transfer Pathway,
摘要:
Previous workers have maintained that evidence for the radical nature of the reaction of LiAlH4 with sterically hindered alkyl iodides is due to radical initiation by impurities followed by a halogen atom radical chain process involving the cyclizable alkyl iodide probe and that the reduction of the C-I bond actually proceeds by an S(N)2 pathway. In order to resolve the validity of this explanation, 1-iodo-2,2-dimethylhexane (the saturated counterpart of the cyclizable probe), which is not capable of this halogen atom radical chain process, was allowed to react with LiAlD4. The reduction product, 2,2-dimethylhexane, contained only 4-76% deuterium depending on the conditions of the reaction. This result is consistent with the reaction proceeding by a SET process via a radical intermediate and is inconsistent with an S(N)2 pathway. We have determined the influence of the nature of the reaction on the type of reactor surface (Pyrex, Teflon, stainless steel, and quartz) used in the reaction. We have also studied the influence of AlD3 (a byproduct in the reduction) in the mechanistic evaluation of this reaction.