Provided are an aromatic sulfonic acid derivative and a sulfonic acid group-containing polymer, each of which has excellent proton conductivity even under low humidification conditions, while having excellent mechanical strength and chemical stability, and enables a solid polymer fuel cell to achieve high output and excellent physical durability when used therein. This aromatic sulfonic acid derivative has a specific structure and is characterized in that a sulfonic acid group is introduced into more than 50% of all the phenyl groups. This sulfonic acid group-containing polymer is characterized by being obtained by polymerization using the aromatic sulfonic acid derivative, and is also characterized by having a specific structure.
申请人:KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
公开号:US20140206899A1
公开(公告)日:2014-07-24
The present invention relates to an improved method for purifying a sulfonated aromatic monomer. The method is an economical method capable of providing a highly pure sulfonated aromatic monomer, in which a salt precipitation step and a recrystallization step are simplified while maintaining the reaction conditions used in a conventional method for synthesizing the sulfonated aromatic monomer, and a purification process is carried out using an easily available and stable chemical substance. The sulfonated aromatic monomer obtained by the purification method will be useful for the preparation of a polymer for a polymer electrolyte membrane and will be advantageous to synthesize polymer with high molecular weight.
Block copolymers with sulfonated polyether sulfone units
申请人:——
公开号:US20010021764A1
公开(公告)日:2001-09-13
Block copolymers containing blocks of unsulfonated aromatic polyether sulfones and blocks of aromatic polyether sulfones sulfonated on the aromatics are characterized in that the block length of the unsulfonated aromatic polyether sulfones in each case comprises at least 10 repeating units and that the sequence of the main chain at the block transitions between two adjacent blocks of aromatic polyether sulfones is the same as it is inside these blocks. These block copolymers may be prepared by polycondensation, and are preferably used as membranes. The block copolymers provide compounds which in addition to an adjustable degree of sulfonation have a defined length of sulfonated and unsulfonated blocks. As a result, the spectrum of the polymers suitable for the preparation of synthetic membranes can be expanded and graded.
An inexpensive and durable polyelectrolyte composition includes both an aromatic polymer containing carbonyl linkages and/or sulfonyl linkages in the backbone chain and bearing cation-exchange groups and a fused salt exhibits a high ionic conductivity even in the absence of water or a solvent. The aromatic polymer is preferably an aromatic polyether sulfone comprising specific structural units and bearing cation-exchange groups, an aromatic polyether ketone comprising specific structural units and bearing cation-exchange groups, an aromatic polyether sulfone block copolymer consisting of at least one hydrophilic segment bearing cation-exchange groups and at least one hydrophobic segment free from cation-exchange groups, and/or an aromatic polyether ketone block copolymer consisting of at least one hydrophilic segment bearing cation-exchange groups and at least one hydrophobic segment free from cation-exchange groups. The use of such a block copolymer as the aromatic polymer gives polyelectrolyte compositions which are excellent in maintenance of structure even at high temperature.
Ion-Conducting Polymers And Membranes Comprising Them
申请人:Colquhoun Matthew Howard
公开号:US20070196734A1
公开(公告)日:2007-08-23
An ion-conducting polymer wherein at least 80% of the repeat units comprise an ion-conducting region and a spacer region is disclosed. The ion-conducting region has an aromatic backbone of one or more aromatic groups, wherein at least one ion-conducting functional group is attached to each aromatic group. The spacer region has an aromatic backbone of at least four aromatic groups, wherein no ion-conducting functional groups are attached to the aromatic backbone. The polymer is suitable for use as a fuel cell membrane, and can be incorporated into membrane electrode assemblies.