作者:Luka Đorđević、Tomas Marangoni、Tanja Miletić、Jenifer Rubio-Magnieto、John Mohanraj、Heinz Amenitsch、Dario Pasini、Nikos Liaros、Stelios Couris、Nicola Armaroli、Mathieu Surin、Davide Bonifazi
DOI:10.1021/jacs.5b02448
日期:2015.7.1
helical morphologies were obtained, with the latter being the only nanostructures expressing chirality at the microscopic level. SAXS analysis combined with molecular modeling simulations showed that the helical superstructures are composed of dimeric double-cable tape-like structures that, in turn, are supercoiled at the microscale. This behavior is interpreted as a consequence of an interplay among
尿嘧啶共轭对映体纯 (R)- 或 (S)-1,1'-binaphthyl-2,2'-diol (BINOL) 和疏水性低聚(对亚苯基乙炔)的自组装和自组织行为(报道了 OPE) 暴露 2,6-二(乙酰氨基) 吡啶末端的生色团。系统光谱(UV-vis、CD、荧光、NMR 和 SAXS)和显微镜研究(TEM 和 AFM)表明,BINOL 和 OPE 化合物经过三重 H 键识别,在溶液中生成不同的有机纳米结构。根据液体介质(甲苯、CHCl3、CHCl3/CHX 和 CHX/THF)的疏溶剂特性,获得了球形、棒状、纤维状和螺旋形形态,后者是唯一在微观上表现出手性的纳米结构等级。SAXS 分析结合分子建模模拟表明,螺旋超结构由二聚体双电缆带状结构组成,而这些结构又在微观尺度上超螺旋。这种行为被解释为氢键识别的缔合程度、溶剂的蒸气压和不同溶液中超分子加合物在静态和动态条件下的疏溶剂/亲溶剂特性之间相互作用的结果,即溶剂蒸发条件为室温。