Molecular Structure of WlbB, a Bacterial <i>N</i>-Acetyltransferase Involved in the Biosynthesis of 2,3-Diacetamido-2,3-dideoxy-<scp>d</scp>-mannuronic Acid,
作者:James B. Thoden、Hazel M. Holden
DOI:10.1021/bi1005738
日期:2010.6.8
The pathogenic bacteria Pseudomonas aeruginosa and Bordetella pertussis contain in their outer membranes the rare sugar 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid. Five enzymes are required for the biosynthesis of this sugar starting from UDP-N-acetylglucosamine. One of these, referred to as WlbB, is an N-acetyltransferase that converts UDP-2-acetamido-3-amino-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NA) to UDP-2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (UDP-GlcNAc3NAcA). Here we report the three-dimensional structure of WlbB from Bordetella petrii. For this analysis, two ternary structures were determined to 1.43 angstrom resolution: one in which the protein was complexed with acetyl-CoA and UDP and the second in which the protein contained bound CoA and UDP-GlcNAc3NA. WlbB adopts a trimeric quaternary structure and belongs to the L beta H superfamily of N-acyltransferases. Each subunit contains 27 beta-strands, 23 of which form the canonical left-handed beta-helix. There are only two hydrogen bonds that occur between the protein and the GlcNAc3NA moiety, one between O-delta 1 of Asn 84 and the sugar C-3' amino group and the second between the backbone amide group of Arg 94 and the sugar C-5' carboxylate. The sugar C-3' amino group is ideally positioned in the active site to attack the si face of acetyl-CoA. Given that there are no protein side chains that can function as general bases within the GlcNAc3NA binding pocket, a reaction mechanism is proposed for WlbB whereby the sulfur of CoA ultimately functions as the proton acceptor required for catalysis.