摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4,4'-bis(2,2-bis-trimethylsilanyl-ethyl)-2,2'-bipyridine | 1300059-69-1

中文名称
——
中文别名
——
英文名称
4,4'-bis(2,2-bis-trimethylsilanyl-ethyl)-2,2'-bipyridine
英文别名
[2-[2-[4-[2,2-Bis(trimethylsilyl)ethyl]pyridin-2-yl]pyridin-4-yl]-1-trimethylsilylethyl]-trimethylsilane;[2-[2-[4-[2,2-bis(trimethylsilyl)ethyl]pyridin-2-yl]pyridin-4-yl]-1-trimethylsilylethyl]-trimethylsilane
4,4'-bis(2,2-bis-trimethylsilanyl-ethyl)-2,2'-bipyridine化学式
CAS
1300059-69-1
化学式
C26H48N2Si4
mdl
——
分子量
501.023
InChiKey
LOPSZTYWBWGQFF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    8.4
  • 重原子数:
    32
  • 可旋转键数:
    9
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.62
  • 拓扑面积:
    25.8
  • 氢给体数:
    0
  • 氢受体数:
    2

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    oxodiperoxidomolybdenum(IV) aqua 、 4,4'-bis(2,2-bis-trimethylsilanyl-ethyl)-2,2'-bipyridine甲醇 为溶剂, 生成 (4,4'-bis(2,2-bis-trimethylsilanyl-ethyl)-2,2'-bipyridine)oxodiperoxidomolybdenum(VI)
    参考文献:
    名称:
    Olefin epoxidation in solventless conditions and apolar media catalysed by specialised oxodiperoxomolybdenum complexes
    摘要:
    The epoxidation of olefin substrates, in both apolar organic media and under solventless conditions, with aqueous hydrogen peroxide and catalysed by molybdenum complexes has been investigated. The catalysts compounds employed were the oxodiperoxomolybdenum complexes of several pyridine, 2,2'-bipyridine and pyrazole ligands with apolar functions (alkyl chains, alkyl-trimethylsilyl groups and polydimethylsiloxanyl polymer), which showed enhanced solubility in relatively apolar organic media. Both the isolated complexes and in situ preparations were catalytically active. The solubility of the new catalyst complexes appears to facilitate the catalytic activity in these systems, since activity was not observed for the analogous, insoluble complexes of unfunctionalised ligands. In these systems, the oxidant, aqueous hydrogen peroxide, forms a separate phase and the catalyst resides in the organic phase. From a green chemistry and economic perspective the elimination of organic solvents and co-catalysts from a reaction system would present advantages and, consequently, the epoxidation reaction was also investigated under solventless conditions. The 3-hexyl-5-methylpyrazole and 3-hexyl-5-heptylpyrazole complexes were found to show heightened activities, the latter being particularly efficient in these conditions, whilst bipyridines apparently inhibit the epoxidation. In addition, the mechanism of the epoxidation reaction was studied through DFT calculations for the model olefin substrate ethylene with the oxodiperoxomolybdenum complex of 3-hexyl-5-heptylpyrazole. The oxo-transfer reaction occurred by interaction of the ethylene with the peroxo ligand via the spirocyclic transition state proposed by Sharpless. (C) 2011 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.molcata.2011.02.004
  • 作为产物:
    描述:
    4,4'-二甲基-2,2'-联吡啶 、 1-chloro-2,2-bis-trimethylsilanyl-ethane 在 lithium diisopropyl amide 作用下, 以 四氢呋喃正己烷 为溶剂, 以70%的产率得到4,4'-bis(2,2-bis-trimethylsilanyl-ethyl)-2,2'-bipyridine
    参考文献:
    名称:
    Olefin epoxidation in solventless conditions and apolar media catalysed by specialised oxodiperoxomolybdenum complexes
    摘要:
    The epoxidation of olefin substrates, in both apolar organic media and under solventless conditions, with aqueous hydrogen peroxide and catalysed by molybdenum complexes has been investigated. The catalysts compounds employed were the oxodiperoxomolybdenum complexes of several pyridine, 2,2'-bipyridine and pyrazole ligands with apolar functions (alkyl chains, alkyl-trimethylsilyl groups and polydimethylsiloxanyl polymer), which showed enhanced solubility in relatively apolar organic media. Both the isolated complexes and in situ preparations were catalytically active. The solubility of the new catalyst complexes appears to facilitate the catalytic activity in these systems, since activity was not observed for the analogous, insoluble complexes of unfunctionalised ligands. In these systems, the oxidant, aqueous hydrogen peroxide, forms a separate phase and the catalyst resides in the organic phase. From a green chemistry and economic perspective the elimination of organic solvents and co-catalysts from a reaction system would present advantages and, consequently, the epoxidation reaction was also investigated under solventless conditions. The 3-hexyl-5-methylpyrazole and 3-hexyl-5-heptylpyrazole complexes were found to show heightened activities, the latter being particularly efficient in these conditions, whilst bipyridines apparently inhibit the epoxidation. In addition, the mechanism of the epoxidation reaction was studied through DFT calculations for the model olefin substrate ethylene with the oxodiperoxomolybdenum complex of 3-hexyl-5-heptylpyrazole. The oxo-transfer reaction occurred by interaction of the ethylene with the peroxo ligand via the spirocyclic transition state proposed by Sharpless. (C) 2011 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.molcata.2011.02.004
点击查看最新优质反应信息

文献信息

  • Olefin epoxidation in solventless conditions and apolar media catalysed by specialised oxodiperoxomolybdenum complexes
    作者:Matthew Herbert、Francisco Montilla、Agustín Galindo
    DOI:10.1016/j.molcata.2011.02.004
    日期:2011.2.15
    The epoxidation of olefin substrates, in both apolar organic media and under solventless conditions, with aqueous hydrogen peroxide and catalysed by molybdenum complexes has been investigated. The catalysts compounds employed were the oxodiperoxomolybdenum complexes of several pyridine, 2,2'-bipyridine and pyrazole ligands with apolar functions (alkyl chains, alkyl-trimethylsilyl groups and polydimethylsiloxanyl polymer), which showed enhanced solubility in relatively apolar organic media. Both the isolated complexes and in situ preparations were catalytically active. The solubility of the new catalyst complexes appears to facilitate the catalytic activity in these systems, since activity was not observed for the analogous, insoluble complexes of unfunctionalised ligands. In these systems, the oxidant, aqueous hydrogen peroxide, forms a separate phase and the catalyst resides in the organic phase. From a green chemistry and economic perspective the elimination of organic solvents and co-catalysts from a reaction system would present advantages and, consequently, the epoxidation reaction was also investigated under solventless conditions. The 3-hexyl-5-methylpyrazole and 3-hexyl-5-heptylpyrazole complexes were found to show heightened activities, the latter being particularly efficient in these conditions, whilst bipyridines apparently inhibit the epoxidation. In addition, the mechanism of the epoxidation reaction was studied through DFT calculations for the model olefin substrate ethylene with the oxodiperoxomolybdenum complex of 3-hexyl-5-heptylpyrazole. The oxo-transfer reaction occurred by interaction of the ethylene with the peroxo ligand via the spirocyclic transition state proposed by Sharpless. (C) 2011 Elsevier B.V. All rights reserved.
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-N'-亚硝基尼古丁 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非尼拉朵 非尼拉敏 阿雷地平 阿瑞洛莫 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 锇二(2,2'-联吡啶)氯化物 链黑霉素 链黑菌素 银杏酮盐酸盐 铬二烟酸盐 铝三烟酸盐 铜-缩氨基硫脲络合物 铜(2+)乙酸酯吡啶(1:2:1) 铁5-甲氧基-6-甲基-1-氧代-2-吡啶酮 钾4-氨基-3,6-二氯-2-吡啶羧酸酯 钯,二氯双(3-氯吡啶-κN)-,(SP-4-1)-