Photosensitizers covalently anchored to the silica surface: Modulation of the excited state efficiency through electron transfer from the linking arm or from the surface
作者:Mohamed Ayadim、Jean Ph Soumillion
DOI:10.1016/0040-4039(95)00810-y
日期:1995.6
Benzophenone derivatives have been anchored on silica in different ways. The so obtained heterogeneous as well as the corresponding homogeneous triplet photosensitizers have been tested in the triplet state isomerization of trans to cis stilbene. A photoinduced electron transfer originating from the amino groups on the linking arm or on the silica surface is found to modulate the sensitizer efficiency
Smartly designed photoreactive silica nanoparticles and their reactivity
作者:Anna Peled、Maria Naddaka、Jean-Paul Lellouche
DOI:10.1039/c1jm00055a
日期:——
Monodisperse, colloidal silica nanoparticles (NPs) are being widely investigated due to a variety of applications in various fields of chemistry. Many works utilize incorporation of various functional groups to silica NPs for their further modifications. However, at present no benzophenone (BPh) or phenyl azide (PA) containing silica NPs exist. Upon UV irradiation BPh and PA form highly reactive species that react with any organic material. Here we present a convenient method for the preparation of novel hybrid photoreactive silica NPs (denoted as SiO2@photoreactive group) prepared by co-condensation of photoreactive organosilanes and tetraethyl orthosilicate (TEOS) to obtain SiO2@PA and SiO2@BPh NPs. The reactivity of these two types of silica NPs is compared to that of perfluorinated phenyl azide (PFPA) based SiO2 NPs. The reactivity evaluation is carried out by the reaction of the three types of SiO2 NPs with highly inert poly(2-chloro-paraxylelene) films. It is found that, in contrast to what is stated in the literature, PA is much more reactive than PFPA, when dealing with solid state photochemical reactions. Next, photoreactive silica NPs on polymer films are used as an intermediate functional phase for a second modification step using silane-based chemistry. A successful incorporation of amine functionality onto silica NPs is achieved by their reaction with 3-aminopropyltriethoxysilane (APTES) and is verified by fluorescence microscopy. This strategy provides a general and versatile route to efficient functionalization of silica by light.
Surface-modified polymer films for coating are provided, wherein the surface is modified by covalent binding of nano- or micro-particles comprising a photoreactive species. The surface of the polymer film, e.g. a parylene film, may be modified by covalent binding of nano- or micro-particles of a polymer, e.g. a conductive bifunctional polymer further comprising a chemically reactive functional group, or of a hybrid organic-inorganic oxide, e.g., silica, network comprising a photoreactive species. Further provided are: (i) polymerizable monomers, the conductive bifunctional polymers obtained therefrom; (ii) a hybrid photoreactive organic-inorganic oxide network; and (iii) micro- or nano-particles made from (i) or (ii).