摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-phenyl-2-(pyridin-4-yl)quinoline-4-carboxamide | 879921-41-2

中文名称
——
中文别名
——
英文名称
N-phenyl-2-(pyridin-4-yl)quinoline-4-carboxamide
英文别名
N-phenyl-2-pyridin-4-ylquinoline-4-carboxamide
N-phenyl-2-(pyridin-4-yl)quinoline-4-carboxamide化学式
CAS
879921-41-2
化学式
C21H15N3O
mdl
——
分子量
325.37
InChiKey
HNHSNBXXGBXNBF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    202-203 °C
  • 沸点:
    477.6±40.0 °C(Predicted)
  • 密度:
    1.280±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.6
  • 重原子数:
    25
  • 可旋转键数:
    3
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    54.9
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    Small Molecule Quantification by Liquid Chromatography-Mass Spectrometry for Metabolites of Drugs and Drug Candidates
    摘要:
    药物及药物候选物代谢物的鉴定和定量通常使用液相色谱-质谱联用技术 (LC-MS) 进行。最佳实践是生成以代谢物与内标的标准曲线。然而,为了避免代谢物合成的困难,有时会使用底物来准备标准曲线,假设底物和代谢物的信号是等效的。我们使用一系列非常相似的化合物,这些化合物经历共同的代谢反应,测试了这一假设所带来的误差,采用了传统流动电喷雾电离 LC-MS 和低流量捕获喷雾电离 (CSI) LC-MS 方法。文中展示了四种不同转化类型(O-去甲基化、N-去甲基化、芳香族羟基化和苄基羟基化)的标准曲线差异。结果表明,在20种底物-代谢物组合中的18种情况下,两种方法中底物和代谢物的信号在统计上是显著不同的。标准曲线的斜率比率最高可变化4倍,但CSI方法的变化略小。
    DOI:
    10.1124/dmd.111.040865
点击查看最新优质反应信息

文献信息

  • Small Molecule Quantification by Liquid Chromatography-Mass Spectrometry for Metabolites of Drugs and Drug Candidates
    作者:Upendra P. Dahal、Jeffrey P. Jones、John A. Davis、Dan A. Rock
    DOI:10.1124/dmd.111.040865
    日期:2011.12
    Identification and quantification of the metabolites of drugs and drug candidates are routinely performed using liquid chromatography-mass spectrometry (LC-MS). The best practice is to generate a standard curve with the metabolite versus the internal standard. However, to avoid the difficulties in metabolite synthesis, standard curves are sometimes prepared using the substrate, assuming that the signal for substrate and the metabolite will be equivalent. We have tested the errors associated with this assumption using a series of very similar compounds that undergo common metabolic reactions using both conventional flow electrospray ionization LC-MS and low-flow captive spray ionization (CSI) LC-MS. The differences in standard curves for four different types of transformations (O-demethylation, N-demethylation, aromatic hydroxylation, and benzylic hydroxylation) are presented. The results demonstrate that the signals of the substrates compared with those of the metabolites are statistically different in 18 of the 20 substrate-metabolite combinations for both methods. The ratio of the slopes of the standard curves varied up to 4-fold but was slightly less for the CSI method.
    药物及药物候选物代谢物的鉴定和定量通常使用液相色谱-质谱联用技术 (LC-MS) 进行。最佳实践是生成以代谢物与内标的标准曲线。然而,为了避免代谢物合成的困难,有时会使用底物来准备标准曲线,假设底物和代谢物的信号是等效的。我们使用一系列非常相似的化合物,这些化合物经历共同的代谢反应,测试了这一假设所带来的误差,采用了传统流动电喷雾电离 LC-MS 和低流量捕获喷雾电离 (CSI) LC-MS 方法。文中展示了四种不同转化类型(O-去甲基化、N-去甲基化、芳香族羟基化和苄基羟基化)的标准曲线差异。结果表明,在20种底物-代谢物组合中的18种情况下,两种方法中底物和代谢物的信号在统计上是显著不同的。标准曲线的斜率比率最高可变化4倍,但CSI方法的变化略小。
  • Cytochrome P450 2C9 Type II Binding Studies on Quinoline-4-Carboxamide Analogues
    作者:Chi-Chi Peng、Jonathan L. Cape、Tom Rushmore、Gregory J. Crouch、Jeffrey P. Jones
    DOI:10.1021/jm8011257
    日期:2008.12.25
    CYP2C9 is a significant P450 protein responsible for drug metabolism. With the increased use of heterocyclic compounds in drug design, a rapid and efficient predrug screening of these potential type II binding compounds is essential to avoid adverse drug reactions. To understand binding modes, we use quinoline-4-carboxamide analogues to study the factors that determine the structure-activity relationships. The results of this study suggest that the more accessible pyridine with the nitrogen para to the linkage can coordinate directly with the ferric heme iron, but this is not seen for the meta or ortho isomers. The pi-cation interaction of the naphthalene moiety and Arg 108 residue may also assist in stabilizing Substrate binding within the active-site cavity. The type II substrate binding affinity is determined by the combination of steric, electrostatic, and hydrophobicity factors; meanwhile, it is enhanced by the strength of lone pair electrons coordination with the heme iron.
  • Comparative Study of the Affinity and Metabolism of Type I and Type II Binding Quinoline Carboxamide Analogues by Cytochrome P450 3A4
    作者:Upendra P. Dahal、Carolyn Joswig-Jones、Jeffrey P. Jones
    DOI:10.1021/jm201207h
    日期:2012.1.12
    Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation, and aromatic hydroxylation. The results demonstrated that type II binding QCA analogues were metabolically less stable (2- to 12-fold) at subsaturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation > benzylic hydroxylation > O-demethylation > aromatic hydroxylation. Finally, for the QCA analogues with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine), indicating that electronegativity of the nitrogen can change regioselectivity in CYP metabolism.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐