Synthesis and Conformational Analysis of a Non-Amidine Factor Xa Inhibitor That Incorporates 5-Methyl-4,5,6,7-tetrahydrothiazolo[5,4-<i>c</i>]pyridine as S4 Binding Element
作者:Noriyasu Haginoya、Syozo Kobayashi、Satoshi Komoriya、Toshiharu Yoshino、Makoto Suzuki、Takashi Shimada、Kengo Watanabe、Yumiko Hirokawa、Taketoshi Furugori、Takayasu Nagahara
DOI:10.1021/jm049884d
日期:2004.10.1
Our exploratory study was based on the concept that a non-amidine factor Xa (fXa) inhibitor is suitable for an orally available anticoagulant. We synthesized and evaluated a series of N-(6-chloronaphthalen-2-yl)sulfonylpiperazine derivatives incorporating various fused-bicyclic rings containing an aliphatic amine expected to be S4 binding element. Among this series, 5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridine type 61 displayed orally potent anti-fXa activity and evident prolongation of prothrombin time (PT) with the moderate bioavailability in rats. The X-ray crystal analysis afforded an obvious binding mode that 5-methyl-4,5,6,7-tetrahydrothiazolo[5,4-c]pyridine and 6-chloronaphthalene respectively bound to S4 and S1 subsites. In this X-ray study, we discovered a novel intramolecular S-O close contact. Ab initio energy calculations of model compounds deduced that conformers with the most close S-O proximity were most stable. The Mulliken population analysis proposed that this energy profile was caused by both of electrostatic S-O affinity and N-O repulsion. The results of these calculations and X-ray analysis suggested a possibility that the restricted conformation effected the affinity to S4 subsite of fXa.