摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-[(C-methylsulfanylcarbonimidoyl)-(phenylmethoxycarbonylamino)amino]acetic acid | 179474-74-9

中文名称
——
中文别名
——
英文名称
2-[(C-methylsulfanylcarbonimidoyl)-(phenylmethoxycarbonylamino)amino]acetic acid
英文别名
——
2-[(C-methylsulfanylcarbonimidoyl)-(phenylmethoxycarbonylamino)amino]acetic acid化学式
CAS
179474-74-9
化学式
C12H15N3O4S
mdl
——
分子量
297.335
InChiKey
ADBDIEYAZPIVTP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.8
  • 重原子数:
    20
  • 可旋转键数:
    8
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    128
  • 氢给体数:
    3
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-[(C-methylsulfanylcarbonimidoyl)-(phenylmethoxycarbonylamino)amino]acetic acid一水合肼 作用下, 以 为溶剂, 以55%的产率得到2-[carbamohydrazonoyl(phenylmethoxycarbonylamino)amino]acetic acid
    参考文献:
    名称:
    Synthesis and Biological Activity of Aminoguanidine and Diaminoguanidine Analogues of the Antidiabetic/Antiobesity Agent 3-Guanidinopropionic Acid
    摘要:
    3-Guanidinopropionic acid (1) has been demonstrated both to improve insulin sensitivity and to promote weight loss selectively from adipose tissue in animal models of non-insulin-dependent diabetes mellitus (NIDDM). However, 1 has also been shown to be a substrate for both the creatine transporter and creatine kinase, leading to marked accumulation in muscle tissue as the corresponding N-phosphate. The corresponding aminoguanidine analogue 2 was recently discovered to retain the antidiabetic activity of 1 while being markedly less susceptible to creatine-like metabolism, suggesting that it should have less potential to accumulate in muscle. Further structural modification of 2 was undertaken to investigate whether the antidiabetic potency could be augmented while maintaining resistance to creatine-like metabolism. Modifications such as a-alkylation, homologation, and bioisosteric replacement of the aminoguanidine all were detrimental to antidiabetic activity. However, the simple regioisomeric aminoguanidinoacetic acid 9 and diaminoguanidinoacetic acid-analogue 7 were found to be equipotent to 2, leading eventually to the discovery of the significantly more potent diaminoguanidinoacetic acid regioisomers 52 and 53. Further attempts to modify the more active template represented by 52 led only to reductions in; antidiabetic activity. Each of the new active analogues displayed the same resistance to creatine-like metabolism as 2. Further testing of 7, 9, and 53 in obese diabetic ob;lob mice confirmed that weight loss is induced selectively from adipose tissue, similar to the lead 1. Administration of 53 to insulin-resistant rhesus monkeys led to reductions in both fasting and post-prandial plasma glucose levels with concomitant reductions in plasma insulin levels, suggesting that the compound improved the action of endogenous insulin. Compounds 7 and 53 were selected for further preclinical development.
    DOI:
    10.1021/jm000094n
  • 作为产物:
    参考文献:
    名称:
    Synthesis and Biological Activity of Aminoguanidine and Diaminoguanidine Analogues of the Antidiabetic/Antiobesity Agent 3-Guanidinopropionic Acid
    摘要:
    3-Guanidinopropionic acid (1) has been demonstrated both to improve insulin sensitivity and to promote weight loss selectively from adipose tissue in animal models of non-insulin-dependent diabetes mellitus (NIDDM). However, 1 has also been shown to be a substrate for both the creatine transporter and creatine kinase, leading to marked accumulation in muscle tissue as the corresponding N-phosphate. The corresponding aminoguanidine analogue 2 was recently discovered to retain the antidiabetic activity of 1 while being markedly less susceptible to creatine-like metabolism, suggesting that it should have less potential to accumulate in muscle. Further structural modification of 2 was undertaken to investigate whether the antidiabetic potency could be augmented while maintaining resistance to creatine-like metabolism. Modifications such as a-alkylation, homologation, and bioisosteric replacement of the aminoguanidine all were detrimental to antidiabetic activity. However, the simple regioisomeric aminoguanidinoacetic acid 9 and diaminoguanidinoacetic acid-analogue 7 were found to be equipotent to 2, leading eventually to the discovery of the significantly more potent diaminoguanidinoacetic acid regioisomers 52 and 53. Further attempts to modify the more active template represented by 52 led only to reductions in; antidiabetic activity. Each of the new active analogues displayed the same resistance to creatine-like metabolism as 2. Further testing of 7, 9, and 53 in obese diabetic ob;lob mice confirmed that weight loss is induced selectively from adipose tissue, similar to the lead 1. Administration of 53 to insulin-resistant rhesus monkeys led to reductions in both fasting and post-prandial plasma glucose levels with concomitant reductions in plasma insulin levels, suggesting that the compound improved the action of endogenous insulin. Compounds 7 and 53 were selected for further preclinical development.
    DOI:
    10.1021/jm000094n
点击查看最新优质反应信息

文献信息

  • Synthesis and Biological Activity of Aminoguanidine and Diaminoguanidine Analogues of the Antidiabetic/Antiobesity Agent 3-Guanidinopropionic Acid
    作者:Valerie A. Vaillancourt、Scott D. Larsen、Steven P. Tanis、Jeffery E. Burr、Mark A. Connell、Michele M. Cudahy、Bruce R. Evans、Peter V. Fisher、Paul D. May、Martin D. Meglasson、Deborah D. Robinson、F. Craig Stevens、John A. Tucker、Thomas J. Vidmar、Jen H. Yu
    DOI:10.1021/jm000094n
    日期:2001.4.1
    3-Guanidinopropionic acid (1) has been demonstrated both to improve insulin sensitivity and to promote weight loss selectively from adipose tissue in animal models of non-insulin-dependent diabetes mellitus (NIDDM). However, 1 has also been shown to be a substrate for both the creatine transporter and creatine kinase, leading to marked accumulation in muscle tissue as the corresponding N-phosphate. The corresponding aminoguanidine analogue 2 was recently discovered to retain the antidiabetic activity of 1 while being markedly less susceptible to creatine-like metabolism, suggesting that it should have less potential to accumulate in muscle. Further structural modification of 2 was undertaken to investigate whether the antidiabetic potency could be augmented while maintaining resistance to creatine-like metabolism. Modifications such as a-alkylation, homologation, and bioisosteric replacement of the aminoguanidine all were detrimental to antidiabetic activity. However, the simple regioisomeric aminoguanidinoacetic acid 9 and diaminoguanidinoacetic acid-analogue 7 were found to be equipotent to 2, leading eventually to the discovery of the significantly more potent diaminoguanidinoacetic acid regioisomers 52 and 53. Further attempts to modify the more active template represented by 52 led only to reductions in; antidiabetic activity. Each of the new active analogues displayed the same resistance to creatine-like metabolism as 2. Further testing of 7, 9, and 53 in obese diabetic ob;lob mice confirmed that weight loss is induced selectively from adipose tissue, similar to the lead 1. Administration of 53 to insulin-resistant rhesus monkeys led to reductions in both fasting and post-prandial plasma glucose levels with concomitant reductions in plasma insulin levels, suggesting that the compound improved the action of endogenous insulin. Compounds 7 and 53 were selected for further preclinical development.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐