Light fluorous synthesis of glucosylated glycerol teichoic acids
摘要:
We here describe the synthesis of glucosylated teichoic acid (TA) fragments using two complementary fluorous scaffolds. The use of a perfluorooctylpropylsulfonylethyl (F-Pse) linker in combination with (glucosyl) glycerol phosphoramidite building blocks allows for the assembly of TA fragments with a terminal phosphate mono-ester, whereas the use of a perfluorooctylsuccinyl spacer delivers TA oligomers featuring a terminal alcohol functionality. These complementary linker systems have been developed because the nature of the TA chain terminus can play a role in the biological activity of the synthetic TAs. A novel alpha-glucosylated glycerolphosphoramidite building block is introduced to allow for a robust light fluorous synthetic protocol. (C) 2012 Elsevier Ltd. All rights reserved.
Fluorous Linker Facilitated Synthesis of Teichoic Acid Fragments
摘要:
The use of perfluorooctylpropylsulfonylethanol as a new phosphate protecting group and fluorous linker is evaluated in the stepwise solution phase synthesis of a number of biologically relevant (carbohydrate substituted) glycerol teichoic acid fragments. Teichoic acid fragments, up to the dodecamer level, were assembled by means of phosphoramidite chemistry, using a relatively small excess of the building blocks and a repetitive efficient purification procedure of the protected intermediates by fluorous solid phase extraction (F-SPE).