摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(1R,3R,4R,5S,6S,7S)-7-(benzyloxy)-1-((benzyloxy)methyl)-5-methyl-6-tosylate-3-(thymin-1-yl)-2-oxabicyclo[2.2.1]heptane | 1147324-87-5

中文名称
——
中文别名
——
英文名称
(1R,3R,4R,5S,6S,7S)-7-(benzyloxy)-1-((benzyloxy)methyl)-5-methyl-6-tosylate-3-(thymin-1-yl)-2-oxabicyclo[2.2.1]heptane
英文别名
[(1R,3R,4R,5S,6S,7S)-5-methyl-3-(5-methyl-2,4-dioxopyrimidin-1-yl)-7-phenylmethoxy-1-(phenylmethoxymethyl)-2-oxabicyclo[2.2.1]heptan-6-yl] 4-methylbenzenesulfonate
(1R,3R,4R,5S,6S,7S)-7-(benzyloxy)-1-((benzyloxy)methyl)-5-methyl-6-tosylate-3-(thymin-1-yl)-2-oxabicyclo[2.2.1]heptane化学式
CAS
1147324-87-5
化学式
C34H36N2O8S
mdl
——
分子量
632.734
InChiKey
UVNBENHQWCKFSR-JDIUSSNSSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.3
  • 重原子数:
    45
  • 可旋转键数:
    11
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.35
  • 拓扑面积:
    129
  • 氢给体数:
    1
  • 氢受体数:
    8

反应信息

  • 作为反应物:
    描述:
    (1R,3R,4R,5S,6S,7S)-7-(benzyloxy)-1-((benzyloxy)methyl)-5-methyl-6-tosylate-3-(thymin-1-yl)-2-oxabicyclo[2.2.1]heptane 在 palladium hydroxide on carbon 、 甲酸铵 作用下, 以 甲醇 为溶剂, 反应 5.0h, 生成 [(1R,3R,4R,5S,6S,7S)-7-hydroxy-1-(hydroxymethyl)-5-methyl-3-(5-methyl-2,4-dioxopyrimidin-1-yl)-2-oxabicyclo[2.2.1]heptan-6-yl] 4-methylbenzenesulfonate
    参考文献:
    名称:
    Double Sugar and Phosphate Backbone-Constrained Nucleotides: Synthesis, Structure, Stability, and Their Incorporation into Oligodeoxynucleotides
    摘要:
    Two diastereomerically pure carba-LNA dioxaphosphorinane nucleotides [(S-p)- or (R-p)-D-2-CNA], simultaneously conformationally locked at the sugar and the phosphate backbone, have been designed and synthesized. Structural studies by NMR as well as by ab initio calculations showed that in (S-p)- and (R-p)-D-2-CNA the Mowing occur: (i) the sugar is locked in extreme North-type conformation with P = 11 degrees and Phi(m) (ii) the six-membered 1,3,2-dioxaphosphorinane ring adopts a half-chair conformation; (iii) the fixed phosphate backbone delta, epsilon, and zeta torsions were found to be delta [gauch(+)], epsilon (cis), zeta[anticlinal(+)] for (S-p)-D-2-CNA, and delta [gaitche(+)], epsilon(cis), zeta[anticlittal(-)] for (R-p)-D-2-CNA. It has been found that F- ion can catalyze the isomerization of pure (S-p)-D-2-CNA or (R-p)-D-2-CNA to give an equilibrium mixture (K = 1.94). It turned out that at equilibrium concentration the (S-p)-D-2-CNA isomer is preferred over the (R-p)-D-2-CNA isomer by 0.39 kcal/mol. The chemical reactivity of the six-membered dioxaphosphorinane ring in D-2-CNA was found to be dependent on the internucleotidic phosphate stereochemistry. Thus, both (Sp)- and (Rp)-D2-CNA dimers (17a and 17b) were very labile toward nucleophile attack in concentrated aqueous ammonia [t(1/2) = 12 and 6 min, respectively] to give carba-LNA-6',5'-phosphodiester (21) approximate to 70-90%, carba-LNA-3',5'-phosphodiester (22) approximate to 10%, and carba-LNA-6',3'-phosphodiester (23) < 10%. In contrasts the (S-p)-D-2-CNA was about 2 times more stable than (Rp)-D2-CNA under hydrazine hydrate/pyficfine/AcOH (pH = 5.6) [t(1/2) = 178 and 99 h, respectively], which was exploited in the deprotection of pure (S-p)-D-2-CNA incorporated antisense oligodeoxynucleotides (AON). Thus, after removal of the solid supports from the (S-p)-D-2-CNA-modified AON by BDU/MeCN, they were treated with hydrazine hydrate in pyridine/AcOH to give pure AONs in 35-40% yield, which was unequivocally characterized by MALDI-TOF to show that they have an intact six-membered dioxaphosphorinane ring. The effect of pure (S-p)-D-2-CNA niodification in the AONs was estimated by complexing to the complementary RNA and DNA strands by the thermal denaturation studies. This showed that this cyclic phosphotriester modification destabilizes the AON/DNA and AON/RNA duplex by about -6 to -9 degrees C/modification. Treatment of (Sp)-D-2-CNA-modified AON with concentrated aqueous ammonia gave cwba-LNA-6',5'-phosphodiester modified AON (similar to 80%) plus a small amount of carba-LNA-3',5'-Phosphodiester-modified AON (similar to 20%). It is noteworthy that Carba-LNA-3',5'-phosphodiester modification stabilized the AON/RNA duplex by +4 degrees C/modificafion (J. Org. Chem. 2009, 74, 118), whereas carba-LNA-6', 5'-phosphodiester modification destabilizes both AON/RNA and AON/DNA significantly (by -10 to -19 degrees C/modification), which, as shown in our comparative CD studies, that the cyclic phosphotriester modified AONs as well as carba-LNA-6'.5'-phosphodiester modified AONs are much more weakly stacked than carba-LNA-3',5'-phosphodiester-modified AONs.
    DOI:
    10.1021/jo900391n
  • 作为产物:
    描述:
    (1R,3R,4R,5S,6S,7S)-7-benzyloxy-1-benzyloxymethyl-6-hydroxy-5-methyl-3-(thymin-1-yl)-2-oxa-bicyclo[2.2.1]heptane 、 对甲苯磺酰氯吡啶 作用下, 反应 36.0h, 以94%的产率得到(1R,3R,4R,5S,6S,7S)-7-(benzyloxy)-1-((benzyloxy)methyl)-5-methyl-6-tosylate-3-(thymin-1-yl)-2-oxabicyclo[2.2.1]heptane
    参考文献:
    名称:
    Double Sugar and Phosphate Backbone-Constrained Nucleotides: Synthesis, Structure, Stability, and Their Incorporation into Oligodeoxynucleotides
    摘要:
    Two diastereomerically pure carba-LNA dioxaphosphorinane nucleotides [(S-p)- or (R-p)-D-2-CNA], simultaneously conformationally locked at the sugar and the phosphate backbone, have been designed and synthesized. Structural studies by NMR as well as by ab initio calculations showed that in (S-p)- and (R-p)-D-2-CNA the Mowing occur: (i) the sugar is locked in extreme North-type conformation with P = 11 degrees and Phi(m) (ii) the six-membered 1,3,2-dioxaphosphorinane ring adopts a half-chair conformation; (iii) the fixed phosphate backbone delta, epsilon, and zeta torsions were found to be delta [gauch(+)], epsilon (cis), zeta[anticlinal(+)] for (S-p)-D-2-CNA, and delta [gaitche(+)], epsilon(cis), zeta[anticlittal(-)] for (R-p)-D-2-CNA. It has been found that F- ion can catalyze the isomerization of pure (S-p)-D-2-CNA or (R-p)-D-2-CNA to give an equilibrium mixture (K = 1.94). It turned out that at equilibrium concentration the (S-p)-D-2-CNA isomer is preferred over the (R-p)-D-2-CNA isomer by 0.39 kcal/mol. The chemical reactivity of the six-membered dioxaphosphorinane ring in D-2-CNA was found to be dependent on the internucleotidic phosphate stereochemistry. Thus, both (Sp)- and (Rp)-D2-CNA dimers (17a and 17b) were very labile toward nucleophile attack in concentrated aqueous ammonia [t(1/2) = 12 and 6 min, respectively] to give carba-LNA-6',5'-phosphodiester (21) approximate to 70-90%, carba-LNA-3',5'-phosphodiester (22) approximate to 10%, and carba-LNA-6',3'-phosphodiester (23) < 10%. In contrasts the (S-p)-D-2-CNA was about 2 times more stable than (Rp)-D2-CNA under hydrazine hydrate/pyficfine/AcOH (pH = 5.6) [t(1/2) = 178 and 99 h, respectively], which was exploited in the deprotection of pure (S-p)-D-2-CNA incorporated antisense oligodeoxynucleotides (AON). Thus, after removal of the solid supports from the (S-p)-D-2-CNA-modified AON by BDU/MeCN, they were treated with hydrazine hydrate in pyridine/AcOH to give pure AONs in 35-40% yield, which was unequivocally characterized by MALDI-TOF to show that they have an intact six-membered dioxaphosphorinane ring. The effect of pure (S-p)-D-2-CNA niodification in the AONs was estimated by complexing to the complementary RNA and DNA strands by the thermal denaturation studies. This showed that this cyclic phosphotriester modification destabilizes the AON/DNA and AON/RNA duplex by about -6 to -9 degrees C/modification. Treatment of (Sp)-D-2-CNA-modified AON with concentrated aqueous ammonia gave cwba-LNA-6',5'-phosphodiester modified AON (similar to 80%) plus a small amount of carba-LNA-3',5'-Phosphodiester-modified AON (similar to 20%). It is noteworthy that Carba-LNA-3',5'-phosphodiester modification stabilized the AON/RNA duplex by +4 degrees C/modificafion (J. Org. Chem. 2009, 74, 118), whereas carba-LNA-6', 5'-phosphodiester modification destabilizes both AON/RNA and AON/DNA significantly (by -10 to -19 degrees C/modification), which, as shown in our comparative CD studies, that the cyclic phosphotriester modified AONs as well as carba-LNA-6'.5'-phosphodiester modified AONs are much more weakly stacked than carba-LNA-3',5'-phosphodiester-modified AONs.
    DOI:
    10.1021/jo900391n
点击查看最新优质反应信息

文献信息

  • Double Sugar and Phosphate Backbone-Constrained Nucleotides: Synthesis, Structure, Stability, and Their Incorporation into Oligodeoxynucleotides
    作者:Chuanzheng Zhou、Oleksandr Plashkevych、Jyoti Chattopadhyaya
    DOI:10.1021/jo900391n
    日期:2009.5.1
    Two diastereomerically pure carba-LNA dioxaphosphorinane nucleotides [(S-p)- or (R-p)-D-2-CNA], simultaneously conformationally locked at the sugar and the phosphate backbone, have been designed and synthesized. Structural studies by NMR as well as by ab initio calculations showed that in (S-p)- and (R-p)-D-2-CNA the Mowing occur: (i) the sugar is locked in extreme North-type conformation with P = 11 degrees and Phi(m) (ii) the six-membered 1,3,2-dioxaphosphorinane ring adopts a half-chair conformation; (iii) the fixed phosphate backbone delta, epsilon, and zeta torsions were found to be delta [gauch(+)], epsilon (cis), zeta[anticlinal(+)] for (S-p)-D-2-CNA, and delta [gaitche(+)], epsilon(cis), zeta[anticlittal(-)] for (R-p)-D-2-CNA. It has been found that F- ion can catalyze the isomerization of pure (S-p)-D-2-CNA or (R-p)-D-2-CNA to give an equilibrium mixture (K = 1.94). It turned out that at equilibrium concentration the (S-p)-D-2-CNA isomer is preferred over the (R-p)-D-2-CNA isomer by 0.39 kcal/mol. The chemical reactivity of the six-membered dioxaphosphorinane ring in D-2-CNA was found to be dependent on the internucleotidic phosphate stereochemistry. Thus, both (Sp)- and (Rp)-D2-CNA dimers (17a and 17b) were very labile toward nucleophile attack in concentrated aqueous ammonia [t(1/2) = 12 and 6 min, respectively] to give carba-LNA-6',5'-phosphodiester (21) approximate to 70-90%, carba-LNA-3',5'-phosphodiester (22) approximate to 10%, and carba-LNA-6',3'-phosphodiester (23) < 10%. In contrasts the (S-p)-D-2-CNA was about 2 times more stable than (Rp)-D2-CNA under hydrazine hydrate/pyficfine/AcOH (pH = 5.6) [t(1/2) = 178 and 99 h, respectively], which was exploited in the deprotection of pure (S-p)-D-2-CNA incorporated antisense oligodeoxynucleotides (AON). Thus, after removal of the solid supports from the (S-p)-D-2-CNA-modified AON by BDU/MeCN, they were treated with hydrazine hydrate in pyridine/AcOH to give pure AONs in 35-40% yield, which was unequivocally characterized by MALDI-TOF to show that they have an intact six-membered dioxaphosphorinane ring. The effect of pure (S-p)-D-2-CNA niodification in the AONs was estimated by complexing to the complementary RNA and DNA strands by the thermal denaturation studies. This showed that this cyclic phosphotriester modification destabilizes the AON/DNA and AON/RNA duplex by about -6 to -9 degrees C/modification. Treatment of (Sp)-D-2-CNA-modified AON with concentrated aqueous ammonia gave cwba-LNA-6',5'-phosphodiester modified AON (similar to 80%) plus a small amount of carba-LNA-3',5'-Phosphodiester-modified AON (similar to 20%). It is noteworthy that Carba-LNA-3',5'-phosphodiester modification stabilized the AON/RNA duplex by +4 degrees C/modificafion (J. Org. Chem. 2009, 74, 118), whereas carba-LNA-6', 5'-phosphodiester modification destabilizes both AON/RNA and AON/DNA significantly (by -10 to -19 degrees C/modification), which, as shown in our comparative CD studies, that the cyclic phosphotriester modified AONs as well as carba-LNA-6'.5'-phosphodiester modified AONs are much more weakly stacked than carba-LNA-3',5'-phosphodiester-modified AONs.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐