Promising core structure for nuclear receptor ligands: Design and synthesis of novel estrogen receptor ligands based on diphenylamine skeleton
摘要:
Novel diphenylamine-type estrogen receptor ligands were designed and synthesized, and their biological activities were evaluated by means of binding assays for estrogen receptor-alpha and -beta and cell proliferation assay using MCF-7 cells. Compounds 4f, 11b, 12c, and 8 showed moderate estrogenic activities. We propose that the diphenylamine skeleton may be a privileged structure for various nuclear receptor ligands, including RAR, RXR, and AR ligands. (C) 2008 Elsevier Ltd. All rights reserved.
ESTROGEN RECEPTOR LIGANDS AND METHODS OF USE THEREOF
申请人:GTX
公开号:US20140057946A1
公开(公告)日:2014-02-27
The present invention relates to methods for reducing testosterone levels by reduction of luteinizing hormone (LH) or independent of LH levels in a male subject and methods of treating, suppressing, reducing the incidence, reducing the severity, or inhibiting prostate cancer, advanced prostate cancer, castration resistant prostate cancer (CRPC), metastatic castration resistant prostate cancer (mCRPC) and palliative treatment of prostate cancer, advanced prostate cancer, castration resistant prostate cancer (CRPC) and metastatic castration resistant prostate cancer (mCRPC), and methods of reducing high or increasing PSA levels and/or increasing SHBG levels in a subject suffering from prostate cancer, advanced prostate cancer, castration resistant prostate cancer (CRPC) and metastatic castration resistant prostate cancer (mCRPC). The compounds of this invention suppress free or total testosterone levels despite castrate levels secondary to ADT and reduce high or increasing PSA levels. This reduction in testosterone levels may be used to treat prostate cancer, advanced prostate cancer, CRPC and mCRPC without causing bone loss, decreased bone mineral density, increased risk of bone fractures, increased body fat, hot flashes and/or gynecomastia.
Novel diphenylamine-type estrogen receptor ligands were designed and synthesized, and their biological activities were evaluated by means of binding assays for estrogen receptor-alpha and -beta and cell proliferation assay using MCF-7 cells. Compounds 4f, 11b, 12c, and 8 showed moderate estrogenic activities. We propose that the diphenylamine skeleton may be a privileged structure for various nuclear receptor ligands, including RAR, RXR, and AR ligands. (C) 2008 Elsevier Ltd. All rights reserved.