The synthesis and spectroelectrochemical behaviour of a new solution processible conjugated polymer, namely poly[5,5â²-(3,3â²-di-n-octyl-2,2â²-bithiophene)}-alt-(2,7-fluoren-9-one)]
(abbreviated as PDOBTF), are described. PDOBTF can be considered as the first member of a new family of conjugated copolymersâpoly(oligothiophene-alt-fluoren-9-one)sâwhose properties can be tuned by changing the length of the oligothiophene segments and their regiochemistry. PDOBTF can be obtained by oxidative polymerisation of 2,7-bis(4-octylthien-2-yl)-fluoren-9-one or by condensation polymerisation of 2,7-bis(5-bromo-4-octylthien-2-yl)-fluoren-9-one using a modification of Yamamoto coupling. Both preparation methods lead to a mixture of polymeric and oligomeric species and require post-polymerisation fractionating if high molecular fractions are to be obtained. Oxidative polymerisation gives product of a higher molecular weight (Mnâ=â41.0 kDa, Mw/Mnâ=â1.81 for the highest molecular weight fraction) as compared to the one prepared by Yamamoto condensation polymerisation (Mnâ=â13.3 kDa, Mw/Mnâ=â1.45 for the highest molecular weight fraction).
Electrochemical oxidation of PDOBTF in an nonaqueous electrolyte (0.1 M Bu4NBF4/acetonitrile) gives rise to an anodic peak at Eâ=â835 mV, which can be ascribed to the p-type doping of the copolymer. The extension of the potential to Eâ=â1500 mV results in the oxidative degradation of the copolymer and induces total loss of its electroactivity. UV-Vis-NIR and Raman spectroelectrochemical data are consistent with the oxidative doping. The latter technique enables the monitoring of the doping-induced changes in both structural sub-units of the copolymer: the bithiophene sub-unit and the fluoren-9-one one.
本文介绍了一种新型溶液可加工共轭聚合物,即聚[5,5â²-(3,3â²-二
正辛基-2,2â²-
噻吩)}-alt-(2,7-
芴-9-酮)](简称
PDOBTF)的合成和光谱电
化学行为。
PDOBTF 可被视为新型共轭共聚物--聚(低聚
噻吩-alt-
芴-9-酮)家族的第一个成员,其特性可通过改变低聚
噻吩片段的长度及其区域
化学性质来调整。
PDOBTF 可通过 2,7-双(4-辛基
噻吩-2-基)-
芴-9-酮的氧化聚合或通过 2,7-双(5-
溴-4-辛基
噻吩-2-基)-
芴-9-酮的缩合聚合(使用山本偶联的一种改良方法)获得。这两种制备方法都会产生聚合物和低聚物的混合物,如果要获得高分子馏分,则需要进行聚合后分馏。与山本缩合聚合法(Mnâ=â13.3 kDa,最高分子量部分的 Mw/Mnâ=â1.81)相比,氧化聚合法得到的产品分子量更高(Mnâ=â41.0 kDa,最高分子量部分的 Mw/Mnâ=â1.81)。
PDOBTF 在非
水电解质(0.1 M Bu4NBF4/
乙腈)中进行电
化学氧化时,在 Eâ=â835 mV 处出现阳极峰,这可归因于共聚物的 p 型掺杂。将电位延长至 Eâ=â1500 mV 时,共聚物会发生氧化降解,从而完全丧失电活性。紫外-可见-近红外光谱和拉曼光谱电
化学数据与氧化掺杂一致。后一种技术可以监测掺杂引起的共聚物两个结构亚单位的变化:双
噻吩亚单位和
芴-9-酮亚单位。