摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

| 173314-59-5

中文名称
——
中文别名
——
英文名称
——
英文别名
——
化学式
CAS
173314-59-5
化学式
C43H91N3Si3Zr
mdl
——
分子量
825.696
InChiKey
HRBRYQNAQBAGDV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    14.89
  • 重原子数:
    50.0
  • 可旋转键数:
    8.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.86
  • 拓扑面积:
    36.09
  • 氢给体数:
    3.0
  • 氢受体数:
    3.0

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Hydrocarbon Activation via Reversible 1,2-RH-Elimination from (tBu3SiNH)3ZrR:  Synthetic, Structural, and Mechanistic Investigations
    摘要:
    Hydrocarbyl complexes, ((t)Bu(3)SiNH)(3)ZrR (1-R), were prepared via metatheses of ((t)Bu(3)SiNH)(3)ZrCl (1-Cl) with RMgX or RLi (R = Me, Et, Cy, CH(2)Ph, allyl, CH=CH2, Ph, CH(2)(t)Bu, C=CPh, C=C(t)Bu), through addition of isobutylene, H2C=C=CMe(2), and acetylene to 1-H (R = (i)Bu, dma, or CH=CH2), and by CH-bond activation; thermal 1,2-RH-elimination from 1-R produced putative ((t)Bu(3)SiNH)(2)Zr=NSi(t)Bu(3) (2), which was subsequently trapped by R'H. Thermolysis of 1-R (similar to 100 degrees C, R = Me or Cy) in the presence of H-2, c-C3H6, and CH4 in cyclohexane or neat C6H6, mesitylene, and toluene afforded 1-R (R = ii, Pr-c, Me, Ph, CH2-3,5-Me(2)C(6)H(3)) and a mixture of 1-CH(2)Ph and 1-C(6)H(4)Me, respectively. Exposure of 1-Cy to C2H4 or C6H6 in cyclohexane provided 1-CH=CH2 or 1-Ph, respectively, but further reaction produced 1(2)-(trans-HC=CH) and 1(2)-(p-C6H4) through double CH-bond activation. Thermolysis of ((t)Bu(3)SiND)(3)ZrCH3 (1-(ND)(3)-CH3) in C6H6 or C6D6 yielded CH3D, and 1C(6)H(5) or 1-(ND)(3)C6D5, through reversible benzene activation. Thermolysis of l-Cy in neat cyclohexane, and with C2H6 Or CMe(4) present, gave cyclometalation product ((t)Bu(3)SiNH)(2)ZrNHSi(t)Bu(2)CMe(2)CH(2) (3) and 1-NHSi(t)Bu(3). In THF, thermolysis of 1-CH3 afforded ((t)Bu(3)SiNH)(2)-(THF)Zr=NSi(t)Bu(3) (2-THF); at 25 degrees C, 1-H lost H-2 in the presence of L (L = THF, Et(2)O, NMe(3), PMe(3)) generating 2-L; 2-L (L = Et(2)O py) was also prepared via ligand exchange with 2-THF. Single crystal X-ray diffraction studies of 2-THF revealed a pseudotetrahedral core, with a long Zr=N bond distance (1.978(8) Angstrom), normal Zr-N(H) bond lengths (2.028(8), 2.031(8) Angstrom, similar amide (154.7(5), 158.1(5)degrees) and imide (156.9(5)degrees) bond angles, and little O(p pi) --> Zr(d pi) bonding. Crystal data: monoclinic, P2(1)/n, a = 13.312(5) Angstrom, b = 18.268(6) Angstrom, c = 20.551(7) Angstrom, beta = 92.30(3)degrees, Z = 4, T = 25 degrees C. 2-Et(2)O thermally eliminated C2H4 to give 1-OEt through gamma-CH activation. Kinetic isotope effects (KIE) on 1,2-RD-elimination from 1-(ND)(3)-R (95.7 degrees C, R = CH3, z(Me) = 6.3(1); CH(2)Ph, z(Bz) = 7.1(6); Ph, z(Ph) = 4.6(4)) and CD3H loss from 1-CD3((CH3)/k(CD3) = (z'(Me))(3) = 1.32) revealed a symmetric H-transfer in a loose transition state. 1,2-RH-elimination rates follow: (96.7 degrees C, k(R) (x10(4) s(-1)) = 22.6(2), Ph; 15.5(2), Pr-c; 13.2(4), CH=CH2; 10.4(2), Cy; 3.21(6), Et; 3.2(1), (i)Bu; 1.3(1), dma; 1.51(6), H; 1.42(4), CH(2)(t)Bu; 1.06(2), Me; 0.34(2), CH2-3,5-Me(2)C(6)H(3); 0.169(3), CH(2)Ph).Competition for ((t)Bu(3)SiNH)(2)Zr=NSi(t)Bu(3) (2) by RH/R'H and equilibria provided information about the stabilities of 1-R relative to 1-Pr-c (R = CPr (0.0 kcal/mol) < Ph (0.3) < CH(2)Ph (0.7) < Me (1.2) < CH(2)(t)Bu (greater than or equal to 7.6) < Et (greater than or equal to 7.8) < Cy (greater than or equal to 10.9)). Transition state energies afforded relative C-H bond activation selectivities (Delta Delta G double dagger relative to Pr-c-H): (PrH)-Pr-c approximate to ArH (0.0 kcal/mol) > MeH (3.4) > PhCH(2)H (4.0) > cyclometalation (greater than or equal to 8.5) > EtH(greater than or equal to 8.9) > (t)BuCH(2)H (greater than or equal to 9.3) > CyH (greater than or equal to 11.2). A correlation of Delta G double dagger(1,2-RH-elimination) with D(R-H) indicated generally late transition states but suggested an earlier composition for the alkyls, as rationalized through a Hammond analysis. Correlation of Delta G double dagger(1,2-RH-elimination) with RH proton affinity implicated tight binding of RH in the transition state and possible RH-binding intermediates (2-RH). 1,2-HC=CR-elimination from 1-C=CR was not observed, but second-order exchanges of 1-C=CPh with (t)BuC=CH, and 1-C=C(t)Bu with HC=CPh were indicative of an associative pathway. All data can be accommodated by the following mechanism: 1-R + R'H reversible arrow 2-RH + R'H reversible arrow 2-R'H + RH reversible arrow 1-R' + RH; a variant where 2 mediates reversible 2-RH + R'H exchange is less likely.
    DOI:
    10.1021/ja950745i
  • 作为产物:
    描述:
    参考文献:
    名称:
    Hydrocarbon Activation via Reversible 1,2-RH-Elimination from (tBu3SiNH)3ZrR:  Synthetic, Structural, and Mechanistic Investigations
    摘要:
    Hydrocarbyl complexes, ((t)Bu(3)SiNH)(3)ZrR (1-R), were prepared via metatheses of ((t)Bu(3)SiNH)(3)ZrCl (1-Cl) with RMgX or RLi (R = Me, Et, Cy, CH(2)Ph, allyl, CH=CH2, Ph, CH(2)(t)Bu, C=CPh, C=C(t)Bu), through addition of isobutylene, H2C=C=CMe(2), and acetylene to 1-H (R = (i)Bu, dma, or CH=CH2), and by CH-bond activation; thermal 1,2-RH-elimination from 1-R produced putative ((t)Bu(3)SiNH)(2)Zr=NSi(t)Bu(3) (2), which was subsequently trapped by R'H. Thermolysis of 1-R (similar to 100 degrees C, R = Me or Cy) in the presence of H-2, c-C3H6, and CH4 in cyclohexane or neat C6H6, mesitylene, and toluene afforded 1-R (R = ii, Pr-c, Me, Ph, CH2-3,5-Me(2)C(6)H(3)) and a mixture of 1-CH(2)Ph and 1-C(6)H(4)Me, respectively. Exposure of 1-Cy to C2H4 or C6H6 in cyclohexane provided 1-CH=CH2 or 1-Ph, respectively, but further reaction produced 1(2)-(trans-HC=CH) and 1(2)-(p-C6H4) through double CH-bond activation. Thermolysis of ((t)Bu(3)SiND)(3)ZrCH3 (1-(ND)(3)-CH3) in C6H6 or C6D6 yielded CH3D, and 1C(6)H(5) or 1-(ND)(3)C6D5, through reversible benzene activation. Thermolysis of l-Cy in neat cyclohexane, and with C2H6 Or CMe(4) present, gave cyclometalation product ((t)Bu(3)SiNH)(2)ZrNHSi(t)Bu(2)CMe(2)CH(2) (3) and 1-NHSi(t)Bu(3). In THF, thermolysis of 1-CH3 afforded ((t)Bu(3)SiNH)(2)-(THF)Zr=NSi(t)Bu(3) (2-THF); at 25 degrees C, 1-H lost H-2 in the presence of L (L = THF, Et(2)O, NMe(3), PMe(3)) generating 2-L; 2-L (L = Et(2)O py) was also prepared via ligand exchange with 2-THF. Single crystal X-ray diffraction studies of 2-THF revealed a pseudotetrahedral core, with a long Zr=N bond distance (1.978(8) Angstrom), normal Zr-N(H) bond lengths (2.028(8), 2.031(8) Angstrom, similar amide (154.7(5), 158.1(5)degrees) and imide (156.9(5)degrees) bond angles, and little O(p pi) --> Zr(d pi) bonding. Crystal data: monoclinic, P2(1)/n, a = 13.312(5) Angstrom, b = 18.268(6) Angstrom, c = 20.551(7) Angstrom, beta = 92.30(3)degrees, Z = 4, T = 25 degrees C. 2-Et(2)O thermally eliminated C2H4 to give 1-OEt through gamma-CH activation. Kinetic isotope effects (KIE) on 1,2-RD-elimination from 1-(ND)(3)-R (95.7 degrees C, R = CH3, z(Me) = 6.3(1); CH(2)Ph, z(Bz) = 7.1(6); Ph, z(Ph) = 4.6(4)) and CD3H loss from 1-CD3((CH3)/k(CD3) = (z'(Me))(3) = 1.32) revealed a symmetric H-transfer in a loose transition state. 1,2-RH-elimination rates follow: (96.7 degrees C, k(R) (x10(4) s(-1)) = 22.6(2), Ph; 15.5(2), Pr-c; 13.2(4), CH=CH2; 10.4(2), Cy; 3.21(6), Et; 3.2(1), (i)Bu; 1.3(1), dma; 1.51(6), H; 1.42(4), CH(2)(t)Bu; 1.06(2), Me; 0.34(2), CH2-3,5-Me(2)C(6)H(3); 0.169(3), CH(2)Ph).Competition for ((t)Bu(3)SiNH)(2)Zr=NSi(t)Bu(3) (2) by RH/R'H and equilibria provided information about the stabilities of 1-R relative to 1-Pr-c (R = CPr (0.0 kcal/mol) < Ph (0.3) < CH(2)Ph (0.7) < Me (1.2) < CH(2)(t)Bu (greater than or equal to 7.6) < Et (greater than or equal to 7.8) < Cy (greater than or equal to 10.9)). Transition state energies afforded relative C-H bond activation selectivities (Delta Delta G double dagger relative to Pr-c-H): (PrH)-Pr-c approximate to ArH (0.0 kcal/mol) > MeH (3.4) > PhCH(2)H (4.0) > cyclometalation (greater than or equal to 8.5) > EtH(greater than or equal to 8.9) > (t)BuCH(2)H (greater than or equal to 9.3) > CyH (greater than or equal to 11.2). A correlation of Delta G double dagger(1,2-RH-elimination) with D(R-H) indicated generally late transition states but suggested an earlier composition for the alkyls, as rationalized through a Hammond analysis. Correlation of Delta G double dagger(1,2-RH-elimination) with RH proton affinity implicated tight binding of RH in the transition state and possible RH-binding intermediates (2-RH). 1,2-HC=CR-elimination from 1-C=CR was not observed, but second-order exchanges of 1-C=CPh with (t)BuC=CH, and 1-C=C(t)Bu with HC=CPh were indicative of an associative pathway. All data can be accommodated by the following mechanism: 1-R + R'H reversible arrow 2-RH + R'H reversible arrow 2-R'H + RH reversible arrow 1-R' + RH; a variant where 2 mediates reversible 2-RH + R'H exchange is less likely.
    DOI:
    10.1021/ja950745i
点击查看最新优质反应信息

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫