Chemical modifications of the N -methyl-laudanosine scaffold point to new directions for SK channels exploration
摘要:
An asparagine or a histidine are present in a similar position in the outer pore region of SK2 and SK3 channels, respectively. Therefore, this structural difference was targeted in order to develop selective blockers of SK channel subtypes. Following docking investigations, based on theoretical models of truncated SK2 and SK3 channels, the benzyl side chain of N-methyl-laudanosine (NML) was functionalized in order to target this specific amino-acid residues. Chiral butanamide and benzyloxy analogues were prepared, resolved and tested for their affinity for SK2 and SK3 channels. Isoquinolinium (NMIQ) derivatives have a higher affinity for both SK channel subtypes than the corresponding derivative with no functionalized side chain. This trend was observed also for the 1,2,3,4-tetrahydroisoquinoline (THIQ) analogues. A benzyloxy functionalized NML enantiomer has a higher affinity than NML stereoisomers. Otherwise, the conserved affinity of these analogues led to the opportunity to further investigate in terms of possible labeling for in vivo investigations of the role of SK channels. (C) 2014 Elsevier Ltd. All rights reserved.
Chemical modifications of the N -methyl-laudanosine scaffold point to new directions for SK channels exploration
摘要:
An asparagine or a histidine are present in a similar position in the outer pore region of SK2 and SK3 channels, respectively. Therefore, this structural difference was targeted in order to develop selective blockers of SK channel subtypes. Following docking investigations, based on theoretical models of truncated SK2 and SK3 channels, the benzyl side chain of N-methyl-laudanosine (NML) was functionalized in order to target this specific amino-acid residues. Chiral butanamide and benzyloxy analogues were prepared, resolved and tested for their affinity for SK2 and SK3 channels. Isoquinolinium (NMIQ) derivatives have a higher affinity for both SK channel subtypes than the corresponding derivative with no functionalized side chain. This trend was observed also for the 1,2,3,4-tetrahydroisoquinoline (THIQ) analogues. A benzyloxy functionalized NML enantiomer has a higher affinity than NML stereoisomers. Otherwise, the conserved affinity of these analogues led to the opportunity to further investigate in terms of possible labeling for in vivo investigations of the role of SK channels. (C) 2014 Elsevier Ltd. All rights reserved.
Synthesis and in vitro evaluation of new analogues as inhibitors for phosphodiesterase 10A
作者:Zhanbin Zhang、Xiaoxia Lu、Jinbin Xu、Justin Rothfuss、Robert H. Mach、Zhude Tu
DOI:10.1016/j.ejmech.2011.05.072
日期:2011.9
A series of analogues were synthesized by optimizing the structure of papaverine. The in vitro PDE10A binding affinity (IC50) values for these new analogues were measured; for compounds that have IC50 value less than 60 nM for PDE10A, the binding affinities (IC50 value) for PDE3A and PDE3B were tested. Of these analogues, compounds 6a, 6b, 6n, 8b, 8c and 11 displayed relatively higher PDE10A potency with IC50 value in the range of 28-60 nM. The most potent compound 1-(4-(2-(2-fluoroethoxy)ethoxy)-3-methoxybenzyl)-6,7-dimethoxyisoquinoline (8c) has the IC50 value of 28 +/- 1.2 nM for PDE10A, 2200 +/- 437 nM for PDE3A and 2520 +/- 210 nM for PDE3B. Compared to papaverine, compound 8c displayed similar PDE10A potency but improved selectivity to PDE10A versus PDE3A and PDE3B. To identify high potent PDE10A inhibitor, further optimization of the structures of these analogues is necessary. (C) 2011 Elsevier Masson SAS. All rights reserved.