摘要:
                                The anaerobic and aerobic decompositions of L2Mo(O)2R2 [L2 = 4,4'-dimethyl-2,2'-dipyridyl, R = CH2Ph, 1; R = CH2C6H4CH3-p, 2; R = (CH2)4CH:  CH2, 3; R = CH2CHMe2, 4; R = CH2CMe3, 5; R = CH2CMe2Ph, 6] were studied.  The anaerobic decomposition mode chosen by a given L2Mo(O)2R2 complex is a sensitive function of the hydrocarbyl group, R.  If accessible-beta-hydrogens are present on R (as in 3 and 4), equal amounts of alkane and alkene are formed through a-beta-hydrogen abstraction pathway.  In the case of 4, an additional pathway involving Mo-R bond homolysis accounts for 10% of the products formed.  When beta-hydrogens are absent from R (as in 1, 2, and 6), the free radical, R castrsk, formed by Mo-R bond homolysis is the predominant product.  However, in every case there is an additional minor pathway for the formation of the alkane, RH, that involves-alpha-hydrogen abstraction from the neighboring hydrocarbyl group.  Because of the expected low stability of the primary neopentyl radical, the alpha-hydrogen abstraction pathway, rather than Mo-R bond homolysis, predominates in the decomposition of 5.  The reaction of the L2Mo(O)2R2 complexes with O2 appears to proceed almost exclusively through the intermediacy of the free radical, R castrsk.  In inert solvents, the principal organic product is the corresponding aldehyde, and the role of O2 in its formation from L2Mo(O)2R2 is 2-fold:  (a) O2 promotes the homolysis of the Mo-R bond to form R castrsk, and (b) O2 traps the resultant radical to yield the aldehyde.  Labeling studies indicated that O2, rather than the Mo = O group, was the predominant source of oxygen for the aldehydes.  Mechanistic implications of our observations for the heterogeneous oxidation of alkanes and alkenes by Mo(VI)- and V(V)-oxo species are discussed.