Facile Hydrolysis of Nickel(II) Complexes with N-Heterocyclic Carbene Ligands
摘要:
Metal complexes with N-heterocyclic carbene ligands (NHC) are ubiquitously used in catalysis, where the stability of the metal-ligand framework is a key issue. Our study shows that Ni-NHC complexes may undergo facile decomposition due to the presence of water in organic solvents (hydrolysis). The ability to hydrolyze Ni(NHC)(2)X-2 complexes decreases in the order of NHC = 1,2,4-triazolium > benzimidazolium approximate to imidazolium. Depending on the ligand and substituents, the half reaction time of the complex decomposition may change from several minutes to hours. The nature of the halogen is also an important factor, and the ability for decomposition of the studied complexes decreases in the order of Cl > Br > I. NMR and MS monitoring revealed that Ni-NHC complexes in the presence of water undergo hydrolysis with Ni-C-carbene bond cleavage, affording the corresponding N,N'-dialkylated azolium salts and nickel(II) hydroxide. These findings are of great importance for designing efficient and recyclable catalytic systems, because trace water is a common contaminant in routine synthetic applications.
Facile Hydrolysis of Nickel(II) Complexes with N-Heterocyclic Carbene Ligands
摘要:
Metal complexes with N-heterocyclic carbene ligands (NHC) are ubiquitously used in catalysis, where the stability of the metal-ligand framework is a key issue. Our study shows that Ni-NHC complexes may undergo facile decomposition due to the presence of water in organic solvents (hydrolysis). The ability to hydrolyze Ni(NHC)(2)X-2 complexes decreases in the order of NHC = 1,2,4-triazolium > benzimidazolium approximate to imidazolium. Depending on the ligand and substituents, the half reaction time of the complex decomposition may change from several minutes to hours. The nature of the halogen is also an important factor, and the ability for decomposition of the studied complexes decreases in the order of Cl > Br > I. NMR and MS monitoring revealed that Ni-NHC complexes in the presence of water undergo hydrolysis with Ni-C-carbene bond cleavage, affording the corresponding N,N'-dialkylated azolium salts and nickel(II) hydroxide. These findings are of great importance for designing efficient and recyclable catalytic systems, because trace water is a common contaminant in routine synthetic applications.