N-[2-(1-cyclohexenyl)ethyl]-N′-[2-(5-bromopyridyl)]-thiourea and N′-[2-(1-cyclohexenyl)ethyl]-N′-[2-(5-chloropyridyl)]- thiourea as potent inhibitors of multidrug-resistant human immunodeficiency virus-1
作者:Fatih M. Uckun、Chen Mao、Sharon Pendergrass、Danielle Maher、Dan Zhu、Lisa Tuel-Ahlgren、T.K. Venkatachalam
DOI:10.1016/s0960-894x(99)00460-6
日期:1999.9
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5bromopyridyl)]- thiourea (HI-346) las well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 mu M) > HI-445 (IC50 = 0.5 mu M) > trovirdine (IC50 = 0.8 mu M) > MKC-442 (IC50 = 0.8 mu M) = delavirdine (IC50 1.5 mu M) > nevirapine (IC50 = 23 mu M). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLVIIIB with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM)> nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation las well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLVIIIB with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 mu M). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1. (C) 1999 Elsevier Science Ltd. All rights reserved.