摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

mer-[RuCl3(NCPh)3] | 71903-99-6

中文名称
——
中文别名
——
英文名称
mer-[RuCl3(NCPh)3]
英文别名
mer-{RuCl3(C6H5CN)3}
mer-[RuCl3(NCPh)3]化学式
CAS
71903-99-6
化学式
C21H15Cl3N3Ru
mdl
——
分子量
516.799
InChiKey
OHYUWUUAFAQWHB-UHFFFAOYSA-K
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    mer-[RuCl3(NCPh)3] 作用下, 以 乙醇二氯甲烷 为溶剂, 以78%的产率得到trans,trans,trans-[ruthenium(II)Cl2(NCPh)2(xylylisocyanide)2]
    参考文献:
    名称:
    Spectroelectrochemical studies on some new ruthenium(II) complexes containing both cyanide and isocyanide ligands
    摘要:
    New ruthenium(II) complexes trans, trans, trans-[RuCl(2)(NCR)(2)(CNR')(2)] (R = Me or Ph, R' = Bu', xylyl or cyclohexyl (cy)) have been prepared by treating mer-[RuCl(3)(NCR)(3)] with the appropriate isocyanide ligand CNR' in EtOH/CH(2)Cl(2). These complexes have been shown to be oxidisable electrochemically in situ to the analogous ruthenium(III) species trans, trans, trans[RuCl(2)(NCR)(2)(CNR')(2)](+) in 0.5 mol dm(-3) [NBu(4)(n)][PF(6)]/CH(2)Cl(2) solution, the stereochemistry of the oxidised species being established by use of an infrared spectroelectrochemical (IRRAS) technique. The electronic absorption spectra of the ruthenium(III) species obtained by use of an OTTLE cell are also reported and discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
    DOI:
    10.1016/s0020-1693(99)00581-2
  • 作为产物:
    描述:
    mer-{N(C4H9)4}{RuCl3(C6H5CN)3} 以 二氯甲烷苯甲腈 为溶剂, 生成 mer-[RuCl3(NCPh)3]
    参考文献:
    名称:
    From [RuX6] to [Ru(RCN)6]: synthesis of mixed halide–nitrile complexes of ruthenium, and their spectroelectrochemical characterization in multiple oxidation states
    摘要:
    A complete series of benzonitrile- and acetonitrile-substituted ruthenium halide complexes [RuX6-n(RCN)n]z (n = 0-6), ranging stepwise from [RuX6]2- to [Ru(RCN)6]2+, has been prepared and characterized. Three series were established, having RCN/X = PhCN/Cl, PhCN/Br, and MeCN/Cl. The strategy of reductive substitution has been developed to prepare [RuX5(RCN)]2-, trans-[RuX4(RCN)2]-, mer-[RuX3(RCN)3] and trans-[RuX2(RCN)4] in turn from [RuX6]2- by systematic electrosynthetic routes, through detailed management of potential, temperature and RCN concentration. The monosubstituted pentahalogeno complexes are unstable and their preparation is only practicable via electrode-induced (Ru(IV) --> Ru(III)) halide displacement from [RuX6]2- at low temperature. At the divalent level, exhaustive substitution to form [RuX(RCN)5]+ and [Ru(RCN)6]2+ from [RuX2(RCN)4] required more forcing chemical conditions (Ag+ and CF3SO3H respectively). Voltammetric studies between -65 and 20-degrees-C confirm that the family of mixed halide-nitrile monomeric complexes is rich in redox chemistry, spanning oxidation states V to II. Under reversible conditions, the various metal-based electrode potentials for [RuX6-n(RCN)n]z are a linear function of the stoichiometry parameter, n, increasing by 0.45 Ru(V)-Ru(IV)) or 0.6 V (Ru(IV)-Ru(III) and Ru(III)-Ru(II)) per halide replace by nitrile. By use of spectroelectrogeneration techniques, the optical charge-transfer spectra for every available member of each family have been recorded in multiple oxidation levels, defining the states Ru(IV) for n = 0-2, Ru(III) for n = 0-5 and Ru(II) for n = 2-6. For the present complexes, there are unmistakable complementary progressions in the halide-to-metal (X --> Ru(III)) and metal-to-ligand (Ru(II) --> RCN) bands, in accord with the underlying trend in E1/2(Ru(III)-Ru(II)). These measurements present an unusual opportunity to document and analyse the characteristic trends in appearance and location of both ligand-to-metal (Ru(III)) and metal-to-ligand (Ru(II)) charge-transfer manifolds as a function of stoichiometry.
    DOI:
    10.1039/dt9910002401
点击查看最新优质反应信息

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫