respectively. This model has been verified on some strong and weak complexes and was found better than that of earlier methods. Δφa, Δφd, and ΔΩCDA (refraction per cm3 due to chargetransfer complex) have also been used to Yoshida and \barOsawa’s method. The K1 obtained from the plot of Δφa or Δφd versus molar ratio of solutes were found more reliable for weak complexes than K1 calculated from Yoshida and \barOsawa’s
已经开发了一个更合适的模型来确定分子复合物的平衡常数 (K1) 和
化学计量。该模型涉及假设:&Δφ_a/C_D°=K_1C_A°/α(1+K_1C_A°)}-K_1Δφ_a/(1+K_1C_A°)^2}&Δφ_d/C_D°=K_1C_A°/α(1+K_1C_A) °))}-K_1Δφ_d/(1+K_1C_A°)^2}其中 Δφa 每 cm3 溶液和受体的折射差;Δφd 是溶液和供体每 cm3 的折射差;α 是电子极化的程度。CA° 和 CD° 分别是受体和供体的初始浓度。该模型已在一些强弱复合体上得到验证,发现比早期方法更好。Δφa、Δφd 和 ΔΩ
CDA(由电荷转移复合物引起的每 cm3 折射)也已用于 Yoshida 和 \barOsawa 的方法。发现从 Δφa 或 Δφd 与溶质摩尔比的关系图中获得的 K1 对于弱配合物比从 Yoshida 和 \barOsawa 的图中计算的